

661

Mirror, Mirror, on The Wall, How Do We Measure
What Our Students do in Scratch Programming?

Goh Kok Ming1, Anuthra Sirisena2, Dayang Rafidah Syariff M.
Fuad3, Juharyanto Juharyanto4

Sultan Idris Education University1,3, SMJK Chung Hwa2, State University of Malang4

Email: kokming888@gmail.com1, anuthra81@gmail.com2,
dgrafidah@gmail.com3, Juharyanto.fip@um.ac.id4

Corresponding Author Email: kokming888@gmail.com

Abstract
This study presents an evaluation framework that aims to enhance the assessment of
computational thinking (CT) skills and coding proficiency in students using Scratch
programming. The framework takes inspiration from previous research and goes beyond
traditional block-counting methods. Instead, it thoroughly analyzes Scratch projects,
examining the types of blocks used and how they interact within the program. By
incorporating established CT concepts and indicators of project complexity, the framework
provides educators with a comprehensive approach to evaluating student projects. While
implementing the framework may pose challenges in terms of manual assessment and
scalability, it holds promise in fostering the development of vital CT skills in students and
preparing them for success in an increasingly digital world. Further refinement and validation
of the framework are necessary to ensure its effectiveness and applicability in diverse
educational settings.
Keywords: Mirror, Measure, Scratch.

Introduction
Over the past decade, there has been a rise in the integration of programming and
computational thinking (CT) skills in educational curricula (Chen et al., 2023). CT, first
introduced by Wing (2006), emphasizes problem-solving methods rooted in computer science
principles. This emphasis has grown in response to our technology-driven society. Although
coding classes have been available since the 1970s and 1980s, they were often difficult to
access due to the complexity of traditional programming languages. These languages require
students to grapple with intricate symbols and syntax, creating a significant obstacle for
younger learners. Fortunately, the emergence of new visual programming languages has
brought about a new era. Languages like Scratch and Alice provide user-friendly interfaces
that allow young students to grasp fundamental programming concepts without getting
caught up in intricate syntax details (Chang, 2014). This creates an engaging and accessible

Vol 13, Issue 3, (2024) E-ISSN: 2226-6348

To Link this Article: http://dx.doi.org/10.6007/IJARPED/v13-i3/21678 DOI:10.6007/IJARPED/v13-i3/21678

Published Online: 15 June 2024

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 3 , No. 3, 2024, E-ISSN: 2226-6348 © 2024

662

learning experience that sparks a passion for technology and problem-solving in a new
generation (Resnick, 2009).
Since its introduction in 2009, Scratch has become a popular platform for young programmers
aged six and above. It offers an accessible space for creating and sharing programs using
intuitive building blocks (Resnick et al., 2009). Scratch has gained millions of users worldwide
and is known for its interactive approach, captivating learners of all ages. Aside from its
entertainment value, Scratch is a powerful tool for developing problem-solving and critical-
thinking skills. It has been proven to enhance comprehension in various subjects (Kalelioglu
& Gulbahar, 2014; Piedade & Dorotea, 2022). Educational institutions, from primary schools
to universities and after-school programs, have embraced Scratch as a way to introduce
students to the exciting world of coding. Moreno-León et al (2018) propose a shift from
generic programming to computational thinking (CT). They emphasize the importance of
nurturing problem-solving abilities and proficiency in tackling complex issues through CT
techniques such as decomposition and algorithm design. This approach equips students with
structured and logical problem-solving methods while fostering creativity and collaboration.
It prepares individuals for success in today's digital landscape (Berikan & Özdemir, 2019;
Korkmaz, 2016).

However, educators face a significant challenge when it comes to assessing students' learning.
One major issue is the lack of effective tools for evaluating student programs and assessing
their development of CT skills through Scratch (Moreno-León et al., 2015). This challenge is
partly due to the absence of a universally agreed-upon definition of CT, which leaves
educators unsure about the best methods for integrating it into their curriculum (Grover &
Pea, 2013; Li et al., 2020a). The different operational definitions of CT lead to a diversity of
assessment practices (Stewart & Baek, 2023). This study is critical for several reasons. First, it
addresses the growing need to equip students with essential CT skills, which are increasingly
vital for success in various professional fields and everyday problem-solving. The integration
of CT into educational curricula helps develop students' logical thinking, creativity, and
collaboration abilities, preparing them for a digital future. Moreover, understanding the
effectiveness of tools like Scratch in fostering these skills can guide educators in implementing
more effective teaching strategies. Therefore, the research questions for this study are as
follows: (i) What existing evaluation models or frameworks for Scratch projects can assist
teachers in assessing students' projects? and (ii) What elements of Computational Thinking
are utilized in the evaluation of Scratch projects?

Literature Review
Scratch Programming
Scratch is a visual programming language primarily designed for education. It uses a block-
based system, allowing users to create applications by combining visual components such as
images, sounds, and videos with scripted functionalities. The logic of these applications is
defined by assembling pre-defined blocks, similar to building with Lego bricks (Ford (Jr.), 2014;
Stewart & Baek, 2023). Each block represents a specific command or action, guiding the
application through various tasks. Additionally, Scratch provides a wide range of media
resources, including graphics and sound effects, as well as features for designing personalized
graphical and audio elements (Ford (Jr.), 2014). It offers a comprehensive environment that
empowers users of all ages (Stewart & Baek, 2023). The intuitive visual programming language
removes barriers, allowing beginners to easily dive into application development and receive

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 3 , No. 3, 2024, E-ISSN: 2226-6348 © 2024

663

immediate feedback on their creations (Ford (Jr.), 2014). This fosters a hands-on learning
experience that helps users grasp fundamental programming concepts (Rose et al., 2017).
Beyond being a programming language, Scratch is also a valuable pedagogical tool when
integrated into different subject areas and learning environments (Stewart & Baek, 2023;
Voinohovska & Doncheva, 2021; Resnick & Rusk, 2020). According to the study by Silva et al.
(2022), integrating Scratch into mathematics education enhances the teaching and learning
process. This approach promotes a more meaningful, creative, and playful learning
experience, as reported by four Mathematics undergraduate students from a Federal Public
Institution in the Midwest. In a pilot project conducted by Naz et al (2017), the effectiveness
of Scratch programming in K-12 classrooms was investigated. The project aimed to support
nineteen K-12 teachers from middle and high schools with no prior programming experience.
The teachers received training in a "hybrid format" that combined face-to-face and online
training. Pre- and post-assessments revealed a significant improvement in students'
performance when utilizing Scratch programming. Furthermore, Bahar's (2021) study
explored the integration of Scratch, a visual programming language, into language teaching
for children. The study aimed to assess its impact on language development and cognitive
skills, as well as identify benefits and challenges from the perspectives of students and
teachers. The findings revealed a significant positive impact on children's listening and
computational thinking skills. While there was no statistically significant effect on academic
achievement, language use, or narrative skills, the experimental group consistently
outperformed the control group in nine out of thirteen components. Students responded
positively to Scratch, finding enjoyment in the lessons, project creation, and collaborative
work. Overall, the study suggests that the benefits of Scratch in language learning outweigh
the identified challenges.

In terms of the learning environment, Presicce et al (2020) conducted a series of online
workshops called "WeScratch" which aimed to assist educators in creating engaging online
learning environments that foster creativity. WeScratch provides a welcoming and playful
space where educators can actively learn to code using Scratch while experiencing an
alternative approach to online learning. This study aimed to examine how WeScratch
promotes engagement among educators worldwide. By providing a playful and collaborative
environment, WeScratch encouraged educators to experiment and enhance their Scratch
programming skills. Moreover, Presicce et al (2020) provided examples of how educators
value their WeScratch experience, both in terms of personal skills development and as a
model for designing similar learning experiences for their students.

Therefore, previous research highlights Scratch as a versatile tool that can empower learners
of all ages. Its user-friendly interface and engaging nature make it suitable for use in various
educational contexts, from fostering computational thinking skills in primary education
classrooms to promoting creative expression in language learning. Educators can leverage
Scratch's rich media library and block-based programming system to design interactive
lessons that cater to different learning styles and abilities. Furthermore, Scratch's online
community provides a platform for learners to share their creations, collaborate on projects,
and engage in peer-to-peer learning, fostering a sense of community and promoting deeper
engagement in the learning process.

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 3 , No. 3, 2024, E-ISSN: 2226-6348 © 2024

664

Challenges of Scratch Programming
Assessing computational thinking (CT) in Scratch Programming presents challenges due to the
existence of different definitions of CT (Stewart & Baek, 2023; Moreno-León et al., 2016). In
a meta-analysis conducted by Sun et al. (2021), various methods of assessing CT skills in K-12
students during programming activities were explored. The study identified four main forms
of CT assessment: CT tests, CT scales, CT tasks, and CT questions. Recent studies indicate that
CT scales, CT tests, and CT tasks are preferred as assessment tools, while CT questions are less
common due to their time-consuming nature and potential influence on participants (Sun et
al., 2021).

Zhao et al (2022) provided examples of these four forms of CT assessment mentioned by (Sun
et al., 2021). CT tests such as Bebras Dagiene & Stupuriene (2016) and CTT Roman-González
et al (2018) are widely used to assess learners' ability to apply CT skills in different scenarios
or challenges. CT scales such as CTS Korkmaz et al (2017) are commonly used for
comprehensive evaluation of learners' CT proficiency. CT tasks such as Dr. Scratch Ma et al
(2021) are utilized as formative assessment methods to evaluate learners' CT skills. On the
other hand, CT questions involve researchers verbally presenting inquiries to the subjects. As
noted by Stewart & Baek (2023); Moreno-León et al (2016), the diverse interpretations of CT
lead to varied assessment practices, which can pose two main issues. Firstly, it becomes
challenging to compare student achievement across different educational programs or
institutions. Secondly, there can be confusion regarding the essential CT skills and knowledge
that students should acquire.

Furthermore, Orozco-Garcia et al (2019) stated that while existing evaluation tools allow for
the assessment of CT development, they do not provide teachers with the ability to (i) select
the factors to be evaluated, (ii) determine the complexity level of the tasks, or (iii) provide
continuous follow-up for timely feedback to students regarding their performance. Therefore,
Orozco-Garcia et al (2019) developed a formative assessment tool for Scratch programming.
The web tool, HERA, enables teachers to design challenges for their students, assess CT
dimensions, provide feedback through challenge results and a gamified strategy, and track
each student's CT development. In terms of coding behavior, Lye and Koh (2018) examined
three case studies to investigate how elementary school children, with different levels of
programming abilities, approach Scratch programming. Lye and Koh (2018) propose
instructional implications to enhance support for children's engagement in computational
thinking during K-12 programming lessons.

Based on previous literature, some assessments heavily focus on coding ability, while others
emphasize problem-solving strategies or algorithmic thinking. This inconsistency makes it
difficult to compare student progress across different programs or even within the same
curriculum. To address this, there is a need to clearly define the specific CT concepts and
practices being assessed within a particular context. This allows teachers to design targeted
assessments that accurately measure student learning and identify areas where additional
support may be needed.

Methodology
This study adapted Wohlin's (2014) guidelines for conducting a systematic literature review
with a snowballing approach. A search was conducted in Google Scholar to identify the related

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 3 , No. 3, 2024, E-ISSN: 2226-6348 © 2024

665

literature with the search string with keywords: “Scratch assessment”, “Scratch evaluation”
and “Scratch programming framework”. The search used the time interval 2010-2024. The
criteria and process for selecting the literature are presented in Table 1 and Figure 1 to
prepare a start set for the next step. Once a start set was identified, snowballing techniques
were performed to determine the inclusion of articles. An analysis was performed to address
the research questions based on the findings.

Table 1
Inclusion and exclusion criteria

Aspect Inclusion Criteria Exclusion Criteria

Time interval
(Year)

Articles in the time interval from
2010 till 2024

Articles are not in time interval from
2010 till 2024

Types of
publication

Full papers or articles are included Conference papers, proceedings,
concept papers, review papers, and
book chapters are excluded

Focus Articles that focus on the
keywords: “Scratch assessment”,
“Scratch evaluation” and “Scratch
programming framework” are
included.

Articles that do not focus on the
keywords: “Scratch assessment”,
“Scratch evaluation” and “Scratch
programming framework” are
excluded.

Language English Non-English

Figure 1. The research approach of this study.

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 3 , No. 3, 2024, E-ISSN: 2226-6348 © 2024

666

Threats to Validity
This study acknowledges potential biases in searching the relevant literature. Selection bias
could have arisen from choosing related articles based on the snowballing search strategy.
However, the selection was based on pre-defined content criteria (inclusion and exclusion
criteria). Topic relevance was secondary, as the focus was on search strategy assessment.
Assessor bias was minimized by involving three researchers who independently assessed the
articles’ quality. This concept, along with the introduction of "borderline articles", enhances
transparency in inclusion/exclusion decisions, allowing readers to assess potential bias.
Overall, the study design and pre-defined article selection criteria effectively minimize threats
to validity.

Findings
Existing Evaluation Framework for Scratch Projects
When working with the Scratch programming language, researchers used different methods
for assessing the development of computational thinking (CT) among learners (Moreno-León
et al., 2016). Some suggest using quantitative measures like test scores and completion rates
to track CT progression in Scratch users. Others recommend qualitative approaches such as
interviews and observations to gain a deeper understanding of learners' problem-solving
abilities and creativity (Stewart & Baek, 2023). A study by Wilson et al (2012) addressed a gap
in research on the effectiveness of game-based learning (GBL) and game-based construction
(GBC) in primary education. While these methodologies are gaining popularity for enhancing
student engagement and motivation, especially in teaching computer programming, there is
still a lack of empirical evidence supporting their effectiveness. Wilson et al (2012) analyzed
29 games created by students in grades 4 through 7 using Scratch to assess the participants'
level of programming proficiency. The analysis was based on predefined criteria designed to
evaluate programming skills within a GBC framework. The study offered valuable pedagogical
insights and established guidelines for evaluating programming ability in this specific context.

Brennan and Resnick (2012) also examined how design-based learning activities, especially
programming interactive tools with Scratch, can enhance computational thinking skills. They
proposed a framework consisting of three essential aspects: computational thinking concepts
(e.g., iteration), practices (e.g., debugging), and perspectives (e.g., problem-solving
approach). They then discussed the use of evolving assessment methods such as project
analysis, interviews, and design scenarios. This study further explored the assessment
strategies employed by the researchers, investigating how techniques like project portfolio
analysis, artifact-based interviews, and design scenarios can be used to evaluate each of these
framework dimensions. By dissecting these assessment techniques, Brennan and Resnick
(2012) provide valuable insights for educators interested in evaluating the learning that
occurs when young people participate in programming activities. Moreover, Seiter and
Foreman (2013) introduced the Progression of the Early Computational Thinking (PECT)
Model. This model provides a comprehensive approach to assessing computational thinking
in primary grades (Grades 1 to 6). The PECT Model combines measurable evidence from
student work with coding design patterns aligned with core computational thinking concepts.
In a pilot test study, Seiter and Foreman (2013) demonstrated the effectiveness of the PECT
Model in identifying variations in computational thinking abilities among students of different
ages and tracking overall progress toward increased computational sophistication. These
findings are crucial for developing age-appropriate curricula that target computational

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 3 , No. 3, 2024, E-ISSN: 2226-6348 © 2024

667

thinking skills in primary education. By considering students' cognitive development stages,
the PECT Model enables educators to design engaging lesson plans that optimize learning
experiences for each grade level.
In the study conducted by Moreno-León et al (2015), the researchers recognized a lack of
effective tools for assessing student projects. To address this gap, they introduced Dr. Scratch,
a web application designed to assist educators in automatically analyzing Scratch projects. Dr.
Scratch provides students with immediate feedback on their code, identifying errors, offering
suggestions for improvement, and promoting the development of Computational Thinking
(CT) skills. To evaluate the application's effectiveness, researchers conducted workshops with
students aged 10-14 from eight different schools. More than 100 participants used Dr. Scratch
to analyze their Scratch projects, reviewed the feedback provided by the tool and
implemented its suggestions for improvement. The findings of the study revealed a significant
increase in students' CT scores and coding skills after the workshops, highlighting the
potential value of Dr. Scratch as a tool for enhancing formative assessment and student
motivation in computer programming education. Building upon the work of Moreno-León et
al (2015); Ngeow (2016) proposed a new framework called Scratch School for analyzing
Scratch projects. This framework aimed to address the limitations of existing analysis tools by
focusing on result stability, data storage, and advanced features. Scratch School utilizes a
novel algorithm design to improve analysis accuracy. The proposed framework employs two
primary analysis methods: basic analysis for overall project evaluation and question-based
analysis. Users can create and submit questions with specific requirements, and receive
analysis results based on their answers.

A study conducted by Nančovska Šerbec et al (2018) compared primary school students (aged
8-12) with future computer science teachers. The study analyzed their cognitive processes
through Scratch projects. The results showed that both groups had a similar understanding of
flow control and data representation. However, students displayed weaker performance in
logic, synchronization, and parallelism. These findings suggest that there are differences in
reasoning abilities and comprehension of complex or concurrent events between the two
groups. The study also emphasized the potential for enhancing elementary students'
computational thinking skills through guided game programming activities. Additionally, the
complexity level of Scratch projects emerged as a significant factor in evaluating students'
computational thinking skills. While computational thinking encompasses problem-solving,
algorithmic thinking, and abstraction, the complexity of Scratch projects provides further
insights into students' comprehension and application of these concepts. Previous research
has primarily used code analysis to assess computational thinking skills in Scratch
programming. Although this approach provides feedback on competence, it lacks the
contextual richness offered by observations or interviews. Automated and performance-
based approaches often fail to offer explicit suggestions or tips for improving code, especially
in terms of efficiency or complexity. Therefore, this study highlights the need for more
comprehensive evaluation and assessment strategies.

Furthermore, Chai et al (2021) discovered that existing auto-judgment tools, which rely on
rigid criteria, were struggling with the complexity of Scratch projects. This poses a challenge
for manual project evaluation due to the rich multimedia content and diverse project types
in Scratch programming. To address this challenge, Chai et al (2021) proposed a Dynamic
Weighted Evaluation System (DWES). The DWES establishes a new evaluation framework

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 3 , No. 3, 2024, E-ISSN: 2226-6348 © 2024

668

based on eight key computational thinking (CT) criteria and automatically assesses student
projects against these criteria. DWES dynamically adjusts the evaluation results based on
project type, moving away from a one-size-fits-all approach. Therefore, this data-driven
adjustment takes into account the specific CT performance and scripts within each project.
Inspired by Moreno-León et al (2015); Chai et al (2021); Ang (2023) proposed a dynamic
weighted evaluation system (DWES) that evaluates the Scratch projects based on CT concepts
and project type. Ang (2023) refined the CT evaluation criteria by identifying eight key
concepts: abstraction and problem decomposition, parallelism, logical thinking,
synchronization, flow control, user interactivity, data representation, and code organization.
The latter modification was taken from the previous work of (Moreno-León et al., 2015). Ang
(2023) expanded the scoring system from a maximum of 3 points to 5 points per concept. This
revised system assigns points based on different levels of competence, ranging from "Basic"
(1 point) to "Proficient" (5 points) (Chai et al., 2021). This change provides a more nuanced
assessment of students' understanding of each CT concept within their Scratch projects.

Zhao et al (2022) examined the impact of mind mapping on students' computational thinking
(CT) skills when learning programming with Scratch. The adapted CT scale and CT tasks (Dr.
Scratch) were used to assess computational thinking abilities in the study. The CT scale was
used as a summative assessment tool, while the CT task was a formative assessment tool.
Both tools were employed to measure the students' computational thinking abilities. The
study involved 73 fifth-grade students (aged 10 to 11) from public primary schools. The
findings of the study revealed that the use of mind mapping was effective in improving
students' CT skills. The majority of these methods rely on manual analysis at the beginning.
Because of this, there was a need for more automated tools to assist in this process, as seen
in the work of (Ngeow, 2015; Moreno-León et al., 2015; Chai et al., 2021; Ang, 2023).
However, according to a study by Smith et al (2018), automated tools can make it more
difficult for learners to receive an accurate assessment of their CT development. Additionally,
relying solely on automated tools can overlook important qualitative aspects of learners'
programming abilities (Stewart & Baek, 2023). Therefore, we recognize the significance of
manual assessment of student progress in developing computational thinking skills through
Scratch. Manual assessment allows educators to consider not only quantitative data but also
qualitative aspects of students' problem-solving abilities and logical reasoning. For example,
when assessing a student's ability to write efficient code, automated tools may only focus on
the correctness of the output without considering the elegance or readability of the code. By
manually evaluating the student's work, educators can provide feedback on not only the final
result but also on their thought process and problem-solving approach. This assessment
approach can better support students in developing a well-rounded understanding of
computational thinking skills through Scratch. Therefore, educators should prioritize
providing feedback that highlights both strengths and areas for improvement in students'
problem-solving approaches through manual assessment of Scratch projects.

What elements of Computational Thinking are utilized in the evaluation of Scratch projects?
A total of five (5) articles on the evaluation framework for Scratch programming were found
in the search results (Brennan & Resnick, 2012; Moreno-León et al., 2015; Ngeow, 2016; Chai
et al., 2021; Ang, 2023). These articles present different components and concepts for
assessing the complexity level and computational thinking (CT) competence of students'
Scratch projects, whether through automated or manual methods. The literature suggests

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 3 , No. 3, 2024, E-ISSN: 2226-6348 © 2024

669

various approaches to evaluating Scratch projects Moreno-León et al (2016), such as analyzing
block types and their interactions within the program, as well as integrating established CT
concepts and indicators of project complexity. Although these studies provide valuable
insights into improving the evaluation process, challenges like manual assessment and
scalability may impede implementation. Nevertheless, the synthesis of these findings
highlights the importance of developing a comprehensive evaluation framework for Scratch
projects that can effectively measure students' CT skills and coding proficiency.

Table 2
Components and concepts identified across different articles

Components/Concepts

Brennan and
Resnick
(2012)

Moreno-
León et al.
(2015)

Ngeow
(2016)

Chai et
al.
(2021)

Ang
(2023)

Computational Thinking
(CT)

√ √ √ √ √

 Abstraction √ √ √ √
 Problem

Decomposition
 √ √ √

 Parallelism √ √ √ √
 Logic Thinking √ √ √ √
 Conditionals √
 Operators √
 Synchronization √ √ √ √
 Flow Control √ √ √
 Sequences √
 Loops √
 User Interactivity √ √ √
 Data Representation √ √ √ √
 Code Organization √
 Events √
 Algorithms √
 Patterns √

Complexity Level √

Drawing upon the components and concepts identified in Table 2 from existing studies, a
comprehensive evaluation framework for Scratch projects could be proposed. This
framework combines both computational thinking (CT) competence and complexity, aiming
to provide a holistic assessment of students' programming endeavors. The components
selected for CT competence within this framework encompass crucial aspects such as
abstraction and problem decomposition, parallelism, logic thinking, synchronization, flow
control, user interactivity, data representation, and code organization. Through this proposed
framework, educators can gain insights into students' abilities to conceptualize, design, and
implement solutions within the Scratch programming environment. However, further
validation and refinement of the framework are necessary to ensure its effectiveness and
applicability across diverse educational contexts.

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 3 , No. 3, 2024, E-ISSN: 2226-6348 © 2024

670

Discussion
The assessment of computational thinking (CT) skills in Scratch programming is a complex
task. There are various methods and complexities involved, and numerous assessment tools,
such as CT tests, scales, tasks, and questions, have been discussed. However, their
effectiveness and applicability are still being tested. Several studies by Moreno-León et al
(2015); Chai et al (2021); Ang (2023) have explored automated evaluation systems,
recognizing their potential but also noting limitations in fully capturing students'
programming abilities. The dynamic weighted evaluation system (DWES), introduced by Chai
et al (2021); Ang (2023), shows promise in assessing Scratch projects, but it may not fully
consider the qualitative aspects that are crucial for CT skills assessment. Similarly, Zhao et al
(2022) have introduced mind mapping to foster CT development, but questions about
scalability and applicability arise. Stewart and Baek (2023) emphasize the importance of
integrating qualitative dimensions alongside quantitative metrics in manual assessments to
gain a comprehensive understanding of students' CT skills. Additionally, project complexity in
Scratch projects is often overlooked but plays a vital role in understanding student
engagement and proficiency. By integrating assessments of project complexity into CT skills
evaluations, teachers can provide more comprehensive support and foster enhanced learning
experiences in Scratch programming.

The exploration of evaluation frameworks for Scratch programming, which includes
contributions from Brennan and Resnick (2012); Moreno-León et al (2015); Ngeow (2016);
Chai et al (2021); Ang (2023), highlights the dynamic nature of assessing students' CT skills. By
synthesizing these findings, there is a need to have a comprehensive evaluation framework
for Scratch projects is necessary to effectively measure students' CT skills. Building upon
identified components and concepts, a proposed framework could be proposed to assess
students' CT skills. This synthesis not only provides teachers with valuable insights into
students' ability to conceptualize and execute solutions within Scratch but also highlights the
ongoing need for validation and refinement to ensure the framework's effectiveness across
diverse educational contexts.

Conclusion
In conclusion, the proposed evaluation framework for Scratch projects builds upon previous
research to offer a comprehensive assessment of students' coding proficiency and
computational thinking (CT) skills within the Malaysian educational context. It goes beyond
simply counting blocks by providing educators with deeper insights into how students apply
programming concepts and understand coding fundamentals. While potential evaluator bias,
scoring system rigidity, and scalability challenges should be considered, the framework
represents a significant advancement in educational assessment. It provides educators with
a valuable tool to develop essential CT skills in students. Future refinements and validation
efforts will ensure its effectiveness and applicability across diverse educational settings. By
leveraging the strengths of the framework and addressing its limitations, educators can
empower students to navigate the complexities of the digital age and prepare them for
success in a tech-driven world.

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 3 , No. 3, 2024, E-ISSN: 2226-6348 © 2024

671

References
Bahar, N. (2021). The Effect of Scratch on Children’s English Language and Cognitive

Development. Retrieved on 23 March 2024 from
https://open.metu.edu.tr/bitstream/handle/11511/89840/12626190.pdf

Brennan, K., & Resnick, M. (2012). Using artifact-based interviews to study the development
of computational thinking in interactive media design. Paper presented at annual
American Educational Research Association meeting, Vancouver, BC, Canada.

Chai, X., Sun, Y., Luo, H., & Mohsen Guizani. (2021). DWES: A Dynamic Weighted Evaluation
System for Scratch based on Computational Thinking. IEEE Transactions on Emerging
Topics in Computing, 1–1. https://doi.org/10.1109/tetc.2020.3044588

Chang, C. K. (2014). Effects of Using Alice and Scratch in an Introductory Programming Course
for Corrective Instruction. Journal of Educational Computing Research, 51(2), 185–204.
https://doi.org/10.2190/ec.51.2.c
Ford (Jr.), J. L. (2014). Scratch 2.0 Programming for Teens. In Google Books. Cengage
Learning PTR.

Kalelioglu, F., & Gulbahar, Y. (2014). The Effects of Teaching Programming via Scratch on
Problem Solving Skills: A Discussion from Learners' Perspective. Informatics in
Education. 13. 33-50.

Li, Y., Schoenfeld, A. H., diSessa, A. A., Grasser, A. C., Benson, L. C., English, L. D., & Duschl, R.
A. (2020a). Computational thinking is more about thinking than computing. Journal for
STEM Education Research, 3(1), 1–18. https://doi.org/10.1007/s41979-020-00030-2.

Lye, S. Y., & Koh, J. H. L. (2018). Case Studies of Elementary Children’s Engagement in
Computational Thinking Through Scratch Programming. Computational Thinking in the
STEM Disciplines, 227–251. https://doi.org/10.1007/978-3-319-93566-9_12

Moreno-León, Jesús. (2018). On the Development of Computational Thinking Skills in Schools
through Computer Programming with Scratch. 10.13140/RG.2.2.12797.05609.

Naz, A., Cody, M., Zackoski, R., Caleb, M., & Dingus, R. (n.d.). Applying Scratch Programming
to Facilitate Teaching in k-12 Classrooms. Retrieved April 8, 2024, from
https://peer.asee.org/applying-scratch-programming-to-facilitate-teaching-in-k-12-
classrooms.pdf

Orozco-Garcia, L., González, C., Carlos, J., Cristian Mondragón, & Hendrys Tobar-Muñoz.
(2019). A Formative Assessment Tool to Support Computational Thinking in the
Classroom. https://doi.org/10.1109/icvrv47840.2019.00043

Piedade, J., & Dorotea, N. (2022). Effects of Scratch-based activities on 4th-grade students’
computational thinking skills. Informatics in Education.
https://doi.org/10.15388/infedu.2023.19
Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational
thinking of primary grade students. Proceedings of the Ninth Annual International ACM
Conference on International Computing Education Research - ICER ’13.
https://doi.org/10.1145/2493394.2493403

Silva, J. M. P. da, Nogueira, C. A., Pina Neves, R. D. S., & Silva, P. C. B. (2022). A utilização do
Scratch como ferramenta pedagógica na percepção de quem ensinará matemática.

https://open.metu.edu.tr/bitstream/handle/11511/89840/12626190.pdf
https://doi.org/10.1109/tetc.2020.3044588
https://doi.org/10.2190/ec.51.2.c
https://doi.org/10.1007/978-3-319-93566-9_12
https://peer.asee.org/applying-scratch-programming-to-facilitate-teaching-in-k-12-classrooms.pdf
https://peer.asee.org/applying-scratch-programming-to-facilitate-teaching-in-k-12-classrooms.pdf
https://doi.org/10.1109/icvrv47840.2019.00043
https://doi.org/10.15388/infedu.2023.19
https://doi.org/10.1145/2493394.2493403

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 3 , No. 3, 2024, E-ISSN: 2226-6348 © 2024

672

Revista Brasileira de Ensino de Ciência E Tecnologia, 15(2).
https://doi.org/10.3895/rbect.v15n2.9614

Wilson, A., Hainey, T., & Connolly, T. (2012). Evaluation of Computer Games Developed by
Primary School Children to Gauge Understanding of Programming Concepts. In P. Felicia
(Ed.), Proceedings of the 6th European Conference on Games Based Learning (pp. 549-
558). Academic Conferences and Publishing Limited (ACPIL).

Wohlin, C., Kalinowski, M., Felizardo, R. K., & Mendes, E. (2022). Successful combination of
database search and snowballing for identification of primary studies in systematic
literature studies. Information and Software Technology, 147(147), 106908.
https://doi.org/10.1016/j.infsof.2022.106908

Voinohovska, V., & Doncheva, J. (2021). The Potential Of Scratch As An Educational
Environment For Teaching Students With Special Educational Needs. INTED Proceedings
(Internet). https://doi.org/10.21125/inted.2021.0021

