
1051

 Evaluating the Difficulties in Programming
Learning: Insights from Polytechnic Students

Zuraihah Ngadengon1,2, Tamil Selvan Subramaniam1, Zurina
Yasak1, Noor Azmiza Ideris3, Zuraidah Mohd Ramly4

1Universiti Tun Hussein Onn Malaysia, Malaysia, 2Politeknik Muadzam Shah, Malaysia,
3Politeknik Sultan Abdul Halim Mu’adzam Shah, Malaysia, 4Politeknik Mersing, Malaysia

Corresponding Author Email: tselvan@uthm.edu.my

Abstract
This study explores the challenges and perspectives of students learning programming at a
Malaysian polytechnic. The study seeks to analyze students's understanding of Problem
Solving and Program Design (PSPD), the factors that contribute to poor performance in the
course and the influence learning environments have on how well they perform. We surveyed
236 students to obtain their demographic data and knowledge, skills, and attitudes toward
programming education. The above shows that control structure topics were identified as
problematic among students. Moreover, the study identifies a few challenges, including
designing algorithms, debugging, and understanding programming syntax. The results also
indicate that students favor more hands-on, applications-oriented approaches to the learning
process, such as group discussion, pair programming, and laboratory work, rather than
didactic lecture-based approaches. Consequently, the results from the study further revealed
that students' reactions to computational thinking modules are' positive, which allows
students to enhance their problem-solving and program design abilities. Seeing these
outcomes indicates that some teaching methods, such as stress learning in pairs through pair
programming and incorporating computational thinking, should be encouraged to improve
the outcome of programming education. The exploration presents evidence-based strategies
that lecturers can embed in their teaching to help alleviate students' struggles and
understanding of programming principles.
Keywords: Computational Thinking, Education, Pair Programming, Polytechnic, Problem
Solving and Program Design

Introduction
Software and the tech sector have boomed, and that boom has created demand for coding
skills, which are ubiquitous and require more than just memorizing syntax. Learning
programming requires cultivating analytical thinking, algorithmic reasoning, and the ability to
convert abstract ideas into working code. All around the world, the mastery of programming
is becoming even more important, given that it is one of the most sought-after competencies
in the contemporary labour market and will continue to be relevant in the future

Vol 14, Issue 01, (2025) E-ISSN: 2226-6348

To Link this Article: http://dx.doi.org/10.6007/IJARPED/v14-i1/24518 DOI:10.6007/IJARPED/v14-i1/24518

Published Online: 07 February 2025

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 4 , No. 1, 2025, E-ISSN: 2226-6348 © 2025

1052

(Amnouychokanant et al., 2021a; Kim & Lee, 2016; Żyła et al., 2024). According to Dengler
and Matthes (2018), individuals with programming expertise can secure well-paying jobs and
remain in high demand in the fast-changing digital economy. Programming is the methodical
process of instructing a computer to perform specific tasks using a language the system can
understand, often involving the manipulation of binary code. Hence, learning programming
involves exposing students to languages like Java, Python, and C, where they create software
programs (Ching et al., 2018).

Proficiency in programming constitutes an essential competency requisite for students
pursuing disciplines within the Information Technology and Computer Science program
(Ubaidullah et al., 2021). The fundamental aim of the programming course is to cultivate
expertise and proficiency, with the overarching goal of producing adept graduates poised for
success in the programming domain (Rahim et al., 2018). Other than that, effective resolution
of programming problems necessitates a confluence of diverse skills. These skills include
systematic thinking (Papadakis et al., 2016), algorithmic thinking (Angeli, 2022; Malik et al.,
2021), problem-solving skills (Erol & Çırak, 2022; A. F. Lai & Yang, 2022; Topalli & Cagiltay,
2018), creativity (Laura-Ochoa & Bedregal-Alpaca, 2022; Weng et al., 2023), cognitive
abilities, and the strategic utilization of problem-solving approaches (Mohd Yusoff et al.,
2021).

Many students face difficulties and barriers during the early stages of learning programming,
especially novices (Alshaye et al., 2018; Cheah, 2020; Husin et al., 2020; Mohd Rum & Zolkepli,
2018; Zheng et al., 2022). Programming courses often have high failure and student dropout
rates (Chuang & Chang, 2024; Figueiredo & García-Peñalvo, 2024; Huang et al., 2024; Roque-
Hernandez et al., 2021). A study by Bennedsen and Caspersen (2007) determine the average
failure rate of students in programming courses. Results showed that 33% of students failed
on average across 63 institutions (12.7%) worldwide. All over the world, around 650,000
students fail programming courses every year, and they believe that the number of students
who enrol in programming courses amounts to more than two million every year.

Subsequently, Watson and Li (2014) expanded this investigation to 15 countries and 51
institutions. Their data when they made the publication indicated a slightly better state of
affairs, with pass rates for introductory programming courses at 67.7% and fail charges at
32.3%. Even with this small drop, their study showed a significant obstacle that a third of
students in these classes face: dropping out or withdrawing. Advancing this line of inquiry,
Bennedsen and Caspersen (2019) administered an even larger survey of 161 institutions
around the world, with a much lower average failure rate of 28% in programming courses.
However, these studies highlight the challenges that are still present in computer
programming education. To make this point even clearer, Topalli and Cagiltay (2018) noted
failure rates exceeding 50%, while Cárdenas-Cobo et al. (2021) indicate that the pass rate in
programming courses did not exceed 43%, which reflects the continuing challenges found in
this area of study.

Problem-solving in programming entails an in-depth comprehension of the challenge at hand
and devising a well-thought-out strategy prior to commencing the coding phase (Cheah, 2020;
Rahim et al., 2018). A major issue of teaching Computer Science is that students often have
poor problem-solving skills (Cárdenas-Cobo et al., 2021; Kadar et al., 2021; Mohd Noor et al.,

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 4 , No. 1, 2025, E-ISSN: 2226-6348 © 2025

1053

2021; Piwek & Savage, 2019). Furthermore, students often encounter difficulties in
comprehending questions and internalizing core concepts, which impedes their capacity to
formulate strategic methodologies and effectively tackle programming problems (Mohd Rum
& Zolkepli, 2018). According to Hai Hom and Abdul Talib (2020), students struggled to
comprehend problem-solving questions and were incapable of planning steps to solve
programming problems. The students also had difficulties understanding basic programming
concepts (Azhar & Adnan, 2022). When they have the problem-solving phases, day-to-day
focus on steps that students simply know to convert problem statements to get onto a PC
program without actually going through the activities that would area of the solution (Malik
& Coldwell-Neilson, 2017).

The learning of programming was shown to have a negative impact on students that can lead
to bad outcomes in terms of academic grades and future careers. Robins et al. (2003) insist
that early programming challenges result in students leaving and not having a strong self-
image, which is critical to their pursuing futures in the domain. Correspondingly, problems in
comprehension of programming concepts may have an impact on the overall academic
performance of the students thus giving rise to poor performance in assignments as well as
exams (Lahtinen et al., 2005).

Polytechnics are key institutions in Technical and Vocational Education and Training (TVET)
which are beginning to tackle these challenges with programs designed to teach
programming. Polytechnics form a part of the factors for a highly skilled national workforce.
Thus, polytechnics are tasked with a dual responsibility to produce academically and
technically competent graduates who are more ethical and fully enabled to meet the
challenges of the 21st-century workforce. Students enrolled in the Diploma in Information
Technology (DIT) program at Polytechnics will be taught as a part of the Polytechnics in DIT
program. They will take the first course available, Problem Solving and Program Design
(PSPD), through the first semester. PSPD serves as a prerequisite for the more advanced
programming courses that follow. Therefore, mastering programming fundamentals is
essential; without it, students may struggle to succeed in more advanced programming
courses. This strong foundation is crucial for their future learning and development.

Specifically, the study aims to achieve the following objectives: (i) evaluate students'
comprehension of key topics in the PSPD course; (ii) analyze students' learning programming
difficulties; (iii) examine contributing factors to unsatisfactory performance in programming
courses; (iv) explore optimal learning settings that facilitate learning programming and (v)
analyze students' perceptions of effective programming learning strategies. By identifying
these challenges, polytechnics can better support students in overcoming obstacles and
enhancing their programming proficiency. The findings will offer evidence-based
recommendations for lecturers to improve teaching approaches and facilitate more effective
learning experiences. Students can achieve success in their academic and professional
careers.

Research Methodology
This study, conducted at a Malaysian polytechnic, is a descriptive study that aims to
investigate students' viewpoints on learning challenges and discern their preferences for
effective methods of learning programming. Therefore, a quantitative survey was used to

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 4 , No. 1, 2025, E-ISSN: 2226-6348 © 2025

1054

obtain relevant data to answer the research questions presented in this study. This study uses
a questionnaire instrument adapted and modified from the questionnaire of Tan et al. (2009).
Two experts specializing in programming education and one expert in instructional design
validated this instrument. They have been teaching programming and instructional design for
more than five years.

Table 1 provides an overview of the questionnaire, divided into four sections. Section A
gathers basic student demographics, giving us a snapshot of the participants' backgrounds.
Meanwhile, Section B looks at the experience in programming and knowledge of computing,
helping us understand how familiar the respondents are with programming. Section C focuses
on learning difficulties, factors for unsatisfactory performance, settings that facilitate
learning, and effective strategies in programming education, aiming to identify the obstacles
students face and the approaches that work best in helping them learn. In Section A,
descriptive statistics present the respondents' demographic data, utilizing frequency and
percentage to provide insights into their backgrounds. Consequently, students will respond
based on the provided scale for sections B to C. The items in Section B use a 4-point Likert
scale, which is 1=Never, 2=Weak, 3=Moderate, and 4=Strong. Meanwhile, the items in Section
C use a 5-point Likert scale, which is 1 = Strongly Disagree, 2 = Disagree, 3 = Uncertain, 4 =
Agree, and 5 = Strongly Agree.

Table 1
Questionnaire information

Section Description

A Student demographics
B Students' comprehension of key topics in the Problem Solving and Program

Design course
C Difficulties in learning programming

Factors to unsatisfactory performance in learning programming
Learning settings that facilitate learning programming

Perceptions of effective programming learning strategies

A pilot study was conducted on 35 respondents at a polytechnic. After the pilot study, the
data was analyzed to determine the level of reliability of the questionnaire items using
Cronbach's alpha. According to Creswell (2011), reliability means that the scores of the
instruments used in the study are stable and consistent. Generally, reliability is represented
with a numerical coefficient between 0.0 and 1.0, where higher values indicate higher
reliability (Gay et al., 2011). The Cronbach's alpha value for the questionnaire is 0.858. This
shows that the items in the questionnaire are highly reliable. This is because a Cronbach's
alpha value of more than 0.7 indicates that the item has a high level of reliability (Farisiyah et
al., 2025; Hair et al., 2009; Nunnally & Bernstein, 1994). Data from the survey was analyzed
using Statistical Program for Social Science (SPSS) version 29.0 to obtain mean scores,
percentages, and standard deviations. The researcher analyzed the mean score using the
interpretation of mean scores proposed by Nunnally and Bernstein (1994). Table 2 presents
the interpretation of the mean scores from Nunnally and Bernstein's (1994), which four levels
of suggested interpretation mean score.

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 4 , No. 1, 2025, E-ISSN: 2226-6348 © 2025

1055

Table 2
Mean Score Interpretation

Mean Scale Level

1.00 – 2.00 Low
2.01 – 3.00 Medium Low
3.01 – 4.00 Medium High
4.01 – 5.00 High

Results and Discussion
Student Demographics
Section A of the survey questionnaire focused on the demographic information of the
respondents participating in this study. This study involved 236 respondents from the DIT
program who are enrolled in the PSPD course. Table 3 presents a summary of the
demographic characteristics of the respondents, including gender, ethnicity, and eligibility for
polytechnic admission. According to the data in Table 3, there were 143 male students
(60.6%) and 93 female students (39.4%). The ethnic breakdown revealed that 193 students
identified as Malay (81.8%), 30 as Indian (12.7%), nine as Chinese (3.8%), and four as
belonging to other ethnic groups (1.7%). Concerning eligibility for polytechnic admission, the
results revealed that 220 respondents (93.2%) had the Sijil Pelajaran Malaysia (SPM) as their
entry qualification. In comparison, 15 respondents (6.4%) had a Community College
Certificate, and one respondent (0.4%) belonged to other categories. Regarding programming
experience in section B, 89 students (37.7%) reported having programming experience.
Meanwhile, 147 students (62.3%) had no programming experience.

Table 3
Student Demographics

Item Category Frequency Percentage (%)

Gender Male
Female

143
93

60.6
39.4

Race Malay
Chinese
Indian
Others

193
9
30
4

81.8
3.8
12.7
1.7

Eligibility to enter the
polytechnic

SPM
Community College
Others

220
15
1

93.2
6.4
0.4

Proficient in using computers Yes 236 100.0
 No 0 0.0
Experience in programming Yes 89 37.7

No 147 62.3

Evaluate students' comprehension of key topics in the Problem Solving and Program Design
course
Table 4 illustrates the students' comprehension of topics related to the PSPD course. The
table is organized from lowest to highest mean values. The table displays students' average
scores and standard deviations for the topics. Overall, the mean values for all categories range

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 4 , No. 1, 2025, E-ISSN: 2226-6348 © 2025

1056

from 2.89 to 3.08, indicating a medium level of understanding. Control structures in problem-
Solving involving sequence, selection, and repetition yielded a mean value of 2.89 (SD=0.706).
This implies that control structures, which include sequence, selection, and repetition topics,
are complex for students to learn (Aris, 2015; Caceffo et al., 2016; Cheah, 2020; Ma et al.,
2011; Robins et al., 2003; Xinogalos, 2014).

Table 4
Comprehension of topics in the Problem Solving and Program Design Course

Topics Mean SD Interpretation

Control structures in problem-solving (sequence,
selection, repetition)

2.89 0.706 Medium Low

Using operators in a program 2.97 0.687 Medium Low
Types and patterns in algorithms to solve
a problem

2.99 0.720 Medium Low

Basic programming language 3.01 0.699 Medium High
Problem-solving concept 3.02 0.687 Medium High
Data and identifier 3.05 0.663 Medium High
Programming life cycle 3.07 0.726 Medium High
Fundamentals of programming languages 3.08 0.680 Medium High

SD standard deviation

Analyze Students' Learning Programming Difficulties
The results, displayed in Table 5, are organized from the highest to the lowest mean values.
The mean values, ranging from 3.22 to 3.34, indicate a medium-high difficulty in grasping
essential programming concepts. The findings indicate that the highest mean value, 3.34 (SD
= 0.916), shows that students struggle most with designing programs to solve specific tasks.
This suggests they have difficulty creating algorithms, recognizing problems, devising
solutions, and implementing their ideas through coding. Additionally, students face
challenges with debugging, which has a mean value of 3.31 (SD = 0.960), and understanding
syntax, with a mean value of 3.30 (SD = 0.864). These skills are fundamental to programming.
Hence, structured techniques such as pseudocode or flowcharts can help students visualize
and plan their solutions before coding, enhancing their understanding and problem-solving
skills (Abidin et al., 2018; Hooshyar et al., 2015; Zhang et al., 2023). Therefore, lecturers
should emphasize a step-by-step approach to problem-solving, encouraging students to break
down complex problems into smaller, more manageable parts.

Table 5
Difficulties in Learning Programming

Difficulty Mean SD Interpretation

Designing a program to solve specific tasks 3.34 0.916 Medium High
Finding errors from own program 3.31 0.960 Medium High
Learning the programming language syntax 3.30 0.864 Medium High
Understanding basic concepts of programming
structure

3.28 0.926 Medium High

Using a program development environment 3.22 0.857 Medium High

SD standard deviation

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 4 , No. 1, 2025, E-ISSN: 2226-6348 © 2025

1057

Examine Contributing Factors to Unsatisfactory Performance in Programming Courses
The data presented in Table 6 highlight several factors contributing to students' unsatisfactory
performance in a programming course. The two highest-ranking factors, with mean values of
3.32 and 3.17, are the syllabus's emphasis on theory over practical application and the
extensive number of topics covered each semester, classified as "Medium High." These
findings suggest that the syllabus's structure and content may significantly impact students'
challenges in the course. Other factors, with mean values ranging from 2.93 to 2.52 and
categorized as "Medium Low," include the quality of lecturer presentations and attention,
insufficient practical examples, and a lack of effective teaching methods. Additionally, issues
such as low student motivation, malfunctioning lab computers, and an unconducive learning
environment hinder performance, although to a lesser extent than syllabus-related issues.
The relatively low mean scores for these factors indicate moderate concerns. Nevertheless,
they still affect student outcomes in the programming course.

Table 6
Factors Contributing to Unsatisfactory Performance Programming Courses

Factors Mean SD Interpretation

The syllabus emphasizes theory over practical
application

3.32 0.930 Medium High

The syllabus for each semester covers too many
topics

3.17 0.791 Medium High

Lecturers' presentations and attention to students
need improvement

2.93 1.099 Medium Low

Few practical examples are provided 2.71 1.115 Medium Low
The teaching methods are not highly effective 2.63 1.004 Medium Low
Students show low motivation toward learning 2.57 1.072 Medium Low
The computers in the labs do not function properly 2.55 1.061 Medium Low
The learning environment is not conducive to
studying

2.52 1.013 Medium Low

SD standard deviation

Explore Optimal Learning Settings that Facilitate Learning Programming
The data presented in Table 7 highlights the learning environments that students find most
conducive to learning programming. Interactive discussions with lecturers scored the highest
mean value, 4.23 (SD = 0.805), indicating a "High" level of effectiveness in facilitating learning.
Practical work in laboratory sessions is closely followed, with a mean score of 4.19 (SD =
0.800), also rated "High." This suggests that students highly value hands-on practice. Group
discussions with peers received a mean score of 4.14 (SD = 0.871), and pair programming
scored 4.03 (SD = 0.894), both classified as "High," emphasizing the significance of
collaborative learning approaches. Lecture-based learning has a slightly lower mean score of
3.97 (SD = 0.901), categorized as "Medium High," indicating moderate effectiveness in this
context. Solo programming received the lowest mean score of 3.07 (SD = 1.213) and was rated
"Medium High". These results suggest a clear preference among students for interactive and
collaborative learning environments. Collaborative learning positively impacts student
collaboration in groups and the acquisition of programming knowledge (Zhan et al., 2024).
Furthermore, collaborative learning can improve students' academic achievement

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 4 , No. 1, 2025, E-ISSN: 2226-6348 © 2025

1058

(Pimpimool, 2024) and learning outcomes (X. Lai & Wong, 2022; Toukiloglou & Xinogalos,
2024) in learning programming.

Table 7
Optimal Learning Settings that Facilitate Learning Programming

Learning settings Mean SD Interpretation

Interactive discussions with lecturers 4.23 0.805 High
Practical work in laboratory sessions 4.19 0.800 High
Group discussions with peers 4.14 0.871 High
Pair programming with a partner 4.03 0.894 High
Engaging in lecture-based learning 3.97 0.901 Medium High
Solo programming 3.07 1.213 Medium High

SD standard deviation

Assessing Students' Perspectives on the Effectiveness of Modules in Programming Education
The data presented in Table 8 highlights the student perceptions of effective programming
learning strategies. The mean score of 3.93 for the learning module indicates an essential
perspective on its usefulness in learning problem-solving learning and program design.
Similarly, students favourably view the inclusion of computational thinking elements, such as
decomposition, abstraction, generalization, algorithms, and evaluation, with a mean score of
3.89 (SD=0.809) for improving problem-solving abilities. In contrast, opinions on solo
programming are more neutral, with a mean score of 3.16 (SD=1.098). This reflects more
significant variability in student opinions; some find it valuable for independent work, while
others perceive it as less beneficial. Finally, pair programming, with a mean score of 3.94
(SD=0.838), showed that students strongly agreed with learning with peers. This
demonstrates a consistent viewpoint that pair programming enhances problem-solving
through peer feedback. The analysis indicates that polytechnic students largely agree on the
benefits of structured learning modules, elements of computational thinking, and pair
programming in improving their problem-solving and program design skills. Correspondingly,
these findings suggest that integrating computational thinking, pair programming, and
structured learning modules may offer a well-rounded approach to accommodating diverse
learning preferences in programming education.

Table 8
Perceptions of Effective Programming Learning Strategies

Perspectives Mean SD Interpretation

Learning modules help in learning problem-solving
and program design

3.93 0.801 Medium High

Elements of computational thinking, such as
decomposition, abstraction, generalization,
algorithms, and evaluation, aid in learning
problem-solving and program design

3.89 0.809 Medium High

Solo programming contributes to learning
problem-solving and program design

3.16 1.098 Medium High

Pair programming is seen as beneficial for learning
problem-solving and program design

3.94 0.838 Medium High

SD standard deviation

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 4 , No. 1, 2025, E-ISSN: 2226-6348 © 2025

1059

According to Lye & Koh (2014), lecturers can use various approaches to teach programming,
including pair and solo programming. In industry, the time allocated by a software developer
or programmer to perform work is 30% programming time alone or solo, 50% time with a
partner (pair programming), and 20% time with two or more partners (Nagappan et al., 2003).
Current programming education emphasizes individual learning or solo programming (Garcia,
2021). Implementing pair programming can transfer knowledge between students, and
scaffolding occurs through communication (Demir & Seferoglu, 2021). Both solo and pair
programming approaches have positive effects on learning programming. Students report
that the solo programming approach makes them more confident and better understand the
computer programs they produce (Simon & Hanks, 2008). Furthermore, solo programming
positively affects coding achievement (Demir & Seferoglu, 2021). The study by Beasley &
Johnson (2022) reported that the average assignment and exam scores for students who used
the pair programming approach obtained higher scores. Therefore, in an academic context,
learning programming can be carried out solo or in pairs by adapting the approach
implemented by the industry.

Problems in learning programming may be caused by disorganized thinking and a lack of
computational thinking elements (Habib et al., 2021). Computational thinking is an essential
21st-century skill for computer scientists and all humans (Morris & Liu, 2020). According to
Lee & Cho (2020), computational thinking, the core of computer science, is an essential
thinking process for solving problems by describing them so they can be solved effectively.
Computational thinking skills are cognitive skills that can be used in teaching and learning the
programming process (Mohd Yusoff et al., 2020). Moreover, emphasis on computational
thinking elements has a positive impact on student achievement in various fields, which are
mathematics (Columba, 2020; Mohd Fadzil et al., 2022), chemistry (Chongo et al., 2021),
science (Lapawi & Husnin, 2020) and programming (Amnouychokanant et al., 2021b; Hai Hom
& Abdul Talib, 2020; Namli & Aybek, 2022; Ou Yang et al., 2023; Polat & Yilmaz, 2022). Then,
educators need to consider using strategies for better learning programming to help minimize
student difficulties (Sabarinath & Quek, 2020) and thus help improve student achievement.
Teaching and learning programming can be improved by developing innovative teaching
approaches (Kadar et al., 2022). Therefore, the programming teaching approach to integrate
computational thinking into teaching and learning should be applied as effectively as possible.

Conclusion
The results of this study provide the current state of programming education among
polytechnic students, revealing the challenges and methods that can be used in learning
programming. The study revealed that students struggle to design programs for specific tasks,
debug errors, and understand programming syntax. These challenges stem from a heavy
emphasis on theoretical content, a dense syllabus, and limited opportunities for hands-on
practice, which are essential elements for building strong programming skills. The dense
syllabus, in particular, makes it difficult for students to fully grasp basic programming
concepts, leaving them overwhelmed and underprepared. One of the most challenging topics
is control structures, which include sequencing, selection, and iteration. Students find this
topic particularly difficult because it requires logical reasoning and abstract thinking, but still
underdeveloped skills. Additionally, many students have no prior experience with
programming, making it more difficult for them to grasp basic concepts such as algorithmic
thinking and program design. This lack of foundational knowledge dramatically hinders their

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 4 , No. 1, 2025, E-ISSN: 2226-6348 © 2025

1060

ability to effectively apply problem-solving techniques, leaving them unprepared to meet the
demands of a programming course.

Based on these findings, several suggestions can be made to improve programming
education. First, lecturers should focus on practical methods when learning programming by
ensuring that students can apply theoretical concepts in real-world scenarios. The use of
structured problem-solving approaches, such as pseudocode and flowcharts, should be
emphasized so that students can break down complex programming tasks. In addition, the
syllabus should be reviewed to ensure a balance between theoretical content and practical
applications. In addition, reducing the topics covered each semester allows for deeper
exploration of core concepts. Integrating computational thinking involving decomposition,
abstraction, generalization, algorithms, and evaluation can improve students' problem-
solving and program design skills. Furthermore, incorporating more collaborative learning
strategies, such as pair programming and peer feedback, can also increase student
engagement and understanding. Interactive discussions between students and lecturers
should be emphasized because students like this learning method. These findings suggest that
an approach that integrates computational thinking, pair programming, and structured
learning modules can improve students' understanding of programming. A more conducive
teaching approach at polytechnics can help students overcome challenges and achieve
greater success in programming education.

References
Abidin, A. F. Z., Yaacob, M. R. Bin, Diah, M. A. I. B. M., Kadiran, K. A., Mustapa, R. F., Abdullah,

M. Bin, Ismail, M. I., & Zaiton, S. N. A. H. (2018). E-FLOWCHART: An electronic educational
quiz board that test student knowledge on C programming concept using flowchart
command. ARPN Journal of Engineering and Applied Sciences, 13(23), 9081–9085.

Alshaye, I. A., Jumaat, N. F., & Tasir, Z. (2018). Programming skills and the relation in Fostering
Students' Higher Order Thinking. Asian Social Science, 14(11), 76.
https://doi.org/10.5539/ass.v14n11p76

Amnouychokanant, V., Boonlue, S., Chuathong, S., & Thamwipat, K. (2021a). A study of first-
year students' attitudes toward programming in the innovation in educational
technology course. Education Research International, 2021, 1–10.
https://doi.org/10.1155/2021/9105342

Amnouychokanant, V., Boonlue, S., Chuathong, S., & Thamwipat, K. (2021b). Online learning
using block-based programming to foster computational thinking abilities during the
COVID-19 pandemic. International Journal of Emerging Technologies in Learning, 16(13),
227–247. https://doi.org/10.3991/ijet.v16i13.22591

Angeli, C. (2022). The effects of scaffolded programming scripts on pre-service teachers'
computational thinking: Developing algorithmic thinking through programming robots.
International Journal of Child-Computer Interaction, 31, 100329.
https://doi.org/10.1016/j.ijcci.2021.100329

Aris, H. (2015). Improving students performance in introductory programming subject: A case
study. 10th International Conference on Computer Science and Education, ICCSE 2015,
657–662. https://doi.org/10.1109/ICCSE.2015.7250328

Azhar, N., & Adnan, N. H. (2022). Mengkaji kelemahan dan kekuatan dalam PdP
pengaturcaraan C #: Satu kajian kes. Jurnal Dunia Pendidikan, 4(2), 280–293.

Beasley, Z., & Johnson, A. (2022). The impact of remote pair programming in an upper-level

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 4 , No. 1, 2025, E-ISSN: 2226-6348 © 2025

1061

CS course. Conference on Innovation and Technology in Computer Science Education, 1,
235–240. https://doi.org/10.1145/3502718.3524772

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory programming. ACM
SIGCSE Bulletin, 39(2), 32–36. https://doi.org/10.1145/1272848.1272879

Bennedsen, J., & Caspersen, M. E. (2019). Failure rates in Introductory Programming-12 years
later. ACM Inroads, 10(2), 30–36. https://doi.org/https://doi.org/10.1145/3324888

Caceffo, R., Wolfman, S., Booth, K. S., & Azevedo, R. (2016). Developing a computer science
concept inventory for introductory programming. SIGCSE 2016 - Proceedings of the 47th
ACM Technical Symposium on Computing Science Education, 364–369.
https://doi.org/10.1145/2839509.2844559

Cárdenas-Cobo, J., Puris, A., Novoa-hernández, P., Parra-jiménez, Á., Moreno-león, J., &
Benavides, D. (2021). Using scratch to improve learning programming in college
students: A positive experience from a non-WEIRD country. Electronics, 10, 1–15.
https://doi.org/10.3390/electronics10101180

Cheah, C. S. (2020). Factors Contributing to the Difficulties in Teaching and Learning of
Computer Programming: A Literature Review. Contemporary Educational Technology,
12(2), ep272. https://doi.org/10.30935/cedtech/8247

Ching, Y. H., Hsu, Y. C., & Baldwin, S. (2018). Developing Computational Thinking with
Educational Technologies for Young Learners. TechTrends, 62(6), 563–573.
https://doi.org/10.1007/s11528-018-0292-7

Chongo, S., Osman, K., & Nayan, N. A. (2021). Impact of the plugged-in and unplugged
chemistry computational thinking modules on achievement in chemistry. Eurasia Journal
of Mathematics, Science and Technology Education, 17(4), 1–21.
https://doi.org/10.29333/ejmste/10789

Chuang, Y. T., & Chang, H. Y. (2024). Analyzing novice and competent programmers' problem-
solving behaviors using an automated evaluation system. Science of Computer
Programming, 237, 103138. https://doi.org/10.1016/j.scico.2024.103138

Columba, L. (2020). Computational thinking using the first in math® online program.
Mathematics Teaching-Research Journal, 12(1), 45–57.

Creswell, J. W. (2011). Educational Research: Planning, Conducting, and Evaluating
Quantitative and Qualitative Research. In Pearson (4th Editio). Pearson.

Demir, Ö., & Seferoglu, S. S. (2021). A Comparison of Solo and Pair Programming in Terms of
Flow Experience, Coding Quality, and Coding Achievement. Journal of Educational
Computing Research, 58(8), 1448–1466. https://doi.org/10.1177/0735633120949788

Dengler, K., & Matthes, B. (2018). The impacts of digital transformation on the labour market:
substitution potentials of occupations in Germany. Technological Forecasting & Social
Change, 137, 304–316. https://doi.org/10.1016/j.techfore.2018.09.024

Erol, O., & Çırak, N. S. (2022). The effect of a programming tool scratch on the problem-solving
skills of middle school students. Education and Information Technologies, 27(3), 4065–
4086. https://doi.org/10.1007/s10639-021-10776-w

Farisiyah, U., Istiyono, E., Hassan, A., Putro, N. H. P. S., Ayriza, Y., Setiawati, F. A., & Mubarok,
E. S. (2025). Psychometric properties of the adapted critical language awareness
instrument. Journal of Education and Learning, 19(1), 404–415.
https://doi.org/10.11591/edulearn.v19i1.21436

Figueiredo, J., & García-Peñalvo, F. J. (2024). Design science research applied to difficulties of
teaching and learning initial programming. Universal Access in the Information Society,
23(3), 1151–1161. https://doi.org/10.1007/s10209-022-00941-4

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 4 , No. 1, 2025, E-ISSN: 2226-6348 © 2025

1062

Garcia, M. B. (2021). Cooperative learning in computer programming: A quasi-experimental
evaluation of Jigsaw teaching strategy with novice programmers. Education and
Information Technologies, 26(4), 4839–4856. https://doi.org/10.1007/s10639-021-
10502-6

Gay, L. R., Mills, G. E., & Airasian, P. (2011). Educational Research: Competencies for Analysis
and Applications 10th Edition. Pearson.

Habib, M. A., Raja-Yusof, R. J., Salim, S. S., Sani, A. A., Sofian, H., & Abu Bakar, A. (2021).
Analyzing students' experience in programming with computational thinking through
competitive, physical, and tactile games: The quadrilateral method approach. Turkish
Journal of Electrical Engineering and Computer Sciences, 25(9), 2280–2297.
https://doi.org/10.3906/elk-2010-73

Hai Hom, S. N., & Abdul Talib, C. (2020). Integration of computational thinking skills in
teaching and learning programming using the EZ-Prog among matriculation student.
Solid State Technology, 63(1s), 670–779.

Hair, J. F., Babin, B. J., & Black, W. C. (2009). Multivariate data analysis 7th Edition. Pearson.
Hooshyar, D., Ahmad, R. B., Md Nasir, M. H. N., Shamshirband, S., & Horng, S. J. (2015).

Flowchart-based programming environments for improving comprehension and
problem-solving skill of novice programmers: A survey. International Journal of
Advanced Intelligence Paradigms, 7(1), 24–56.
https://doi.org/10.1504/IJAIP.2015.070343

Huang, Y., Schunn, C. D., Guerra, J., & Brusilovsky, P. (2024). Why Students Cannot Easily
Integrate Component Skills: An Investigation of the Composition Effect in Programming.
ACM Transactions on Computing Education, 24(3). https://doi.org/10.1145/3673239

Husin, N. F., Mohamad Judi, H., Hanawi, S. A., & Mohd Amin, H. (2020). Technology
integration to promote desire to Learn programming in higher education. International
Journal on Advanced Science, Engineering and Information Technology, 10(1), 253–259.

Kadar, R., Abdul Wahab, N., Othman, J., Shamsuddin, M., & Mahlan, S. B. (2021). A Study of
Difficulties in Teaching and Learning Programming: A Systematic Literature Review.
International Journal of Academic Research in Progressive Education and Development,
10(3), 591–605. https://doi.org/10.6007/ijarped/v10-i3/11100

Kadar, R., Mahlan, S. B., & Shamsuddin, M. (2022). Analysis of Factors Contributing to the
Difficulties in Learning Computer Programming among Non- Computer Science Students.
IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE), 89–94.

Kim, S., & Lee, Y. (2016). The effect of robot programming education on attitudes towards
robots. Technological Forecasting & Social Change, 9(24), 1–11.
https://doi.org/10.17485/ijst/2016/v9i24/96104

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005). A study of the difficulties of novice
programmers. ACM SIGCSE Bulletin, 37(3), 14–18.
https://doi.org/10.1145/1067445.1067453

Lai, A. F., & Yang, C. Y. (2022). The Effectiveness of Block-Based Programming Learning on the
Problem-Solving Skills of the Freshmen. Communications in Computer and Information
Science. https://doi.org/10.1007/978-981-19-9582-8_45

Lai, X., & Wong, G. K. (2022). Collaborative versus individual problem solving in computational
thinking through programming : A meta-analysis. British Journal of Educational
Technology, 53, 150–170. https://doi.org/10.1111/bjet.13157

Lapawi, N., & Husnin, H. (2020). Investigating students' computational thinking skills on
Matter module. International Journal of Advanced Computer Science and Applications,

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 4 , No. 1, 2025, E-ISSN: 2226-6348 © 2025

1063

11(11), 310–314. https://doi.org/10.14569/IJACSA.2020.0111140
Laura-Ochoa, L., & Bedregal-Alpaca, N. (2022). Incorporation of Computational Thinking

Practices to Enhance Learning in a Programming Course. International Journal of
Advanced Computer Science and Applications, 13(2), 194–200.
https://doi.org/10.14569/IJACSA.2022.0130224

Lee, Y., & Cho, J. (2020). Knowledge representation for computational thinking using
knowledge discovery computing. Information Technology and Management, 21(1), 15–
28. https://doi.org/10.1007/s10799-019-00299-9

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking
through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.
https://doi.org/10.1016/j.chb.2014.09.012

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2011). Investigating and improving the models
of programming concepts held by novice programmers. Computer Science Education,
21(1), 57–80. https://doi.org/10.1080/08993408.2011.554722

Malik, S. I., & Coldwell-Neilson, J. (2017). Impact of a new Teaching and learning approach in
an Introductory Programming course. Journal of Educational Computing Research, 55(6),
789–819. https://doi.org/10.1177/0735633116685852

Malik, S. I., Tawafak, R. M., Alfarsi, G., Ashfaque, M. W., & Mathew, R. (2021). A model for
enhancing algorithmic thinking in programming education using PAAM. International
Journal of Interactive Mobile Technologies, 15(9), 37–51.
https://doi.org/10.3991/ijim.v15i09.20617

Mohd Fadzil, A. H., Mohd Nihra Haruzuan, M. S., Noraffandy, Y., & Zaleha, A. (2022). Effects
of augmented reality application integration with computational thinking in geometry
topics. Education and Information Technologies, 27, 9485–9521.
https://doi.org/10.1007/s10639-022-10994-w

Mohd Noor, N. F., Saad, A., & Hashim, A. (2021). Functional requirements of a C-Programming
problem-solving application. Politeknik & Kolej Komuniti Journal of Life Long Learning,
5(1), 1–12.

Mohd Rum, S. N., & Zolkepli, M. (2018). Metacognitive strategies in teaching and learning
computer programming. International Journal of Engineering & Technology, 7(4.38),
788–794. https://doi.org/10.14419/ijet.v7i4.38.27546

Mohd Yusoff, K., Sahari Ashaari, N., Tengku Wook, T. S. M., & Mohd Ali, N. (2020). Analysis on
the requirements of computational thinking skills to overcome the difficulties in learning
programming. (IJACSA) International Journal of Advanced Computer Science and
Application, 11(3), 244–253.

Mohd Yusoff, K., Sahari Ashaari, N., Tengku Wook, T. S. M., & Mohd Ali, N. (2021). Validation
of the Components and Elements of Computational Thinking for Teaching and Learning
Programming using the Fuzzy Delphi Method. International Journal of Advanced
Computer Science and Applications, 12(1), 80–88.
https://doi.org/10.14569/IJACSA.2021.0120111

Morris, H. S., & Liu, S. J. C. (2020). Computational thinking education in the Asian Pacific
region. The Asia-Pacific Education Researcher, 29(1), 1–8.
https://doi.org/10.1007/s40299-019-00494-w

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., & Balik, S. (2003).
Improving the CS1 experience with pair programming. ACM SIGCSE Bulletin, 35(1), 359–
362. https://doi.org/10.1145/792548.612006

Namli, N. A., & Aybek, B. (2022). An Investigation of The Effect of Block-Based Programming

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 4 , No. 1, 2025, E-ISSN: 2226-6348 © 2025

1064

and Unplugged Coding Activities on Fifth Graders' Computational Thinking Skills, Self-
Efficacy and Academic Performance. Contemporary Educational Technology, 14(1), 1–
16. https://doi.org/10.30935/cedtech/11477

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric Theory 3rd Edition. McGraw-Hill.
https://doi.org/10.2307/1161962

Ou Yang, F. C., Lai, H. M., & Wang, Y. W. (2023). Effect of augmented reality-based virtual
educational robotics on programming students' enjoyment of learning, computational
thinking skills, and academic achievement. Computers and Education, 195, 104721.
https://doi.org/10.1016/j.compedu.2022.104721

Papadakis, S., Kalogiannakis, M., Zaranis, N., & Orfanakis, V. (2016). Using Scratch and App
Inventor for teaching introductory programming in secondary Education. A case study.
International Journal of Technology Enhanced Learning, 8, 217–232.
https://doi.org/10.1504/ijtel.2016.10001505

Pimpimool, A. (2024). Enhancing Algorithm and Programming Education through
Collaborative Blended Learning: A Problem-Based Approach for First-Year Students.
International Journal of Modern Education and Computer Science, 16(4), 35–45.
https://doi.org/10.5815/ijmecs.2024.04.03

Piwek, P., & Savage, S. (2019). Challenges with learning to program and problem solve: An
analysis of student online discussions. Annual Conference on Innovation and Technology
in Computer Science Education, ITiCSE, 494–499.
https://doi.org/10.1145/3328778.3366838

Polat, E., & Yilmaz, R. M. (2022). Unplugged versus plugged-in: examining basic programming
achievement and computational thinking of 6th-grade students. Education and
Information Technologies, 27, 9145–9179. https://doi.org/10.1007/s10639-022-10992-
y

Rahim, H., Zaman, H. B., Ahmad, A., & Ali, N. M. (2018). Student' s Difficulties in Learning
Programming. Advanced Journal of Technical and Vocational Education, 2(3), 40–43.
https://doi.org/10.26666/rmp.ajtve.2018.3.7

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review
and discussion. Computer Science Education, 13(2), 137–172.
https://doi.org/10.1076/csed.13.2.137.14200

Roque-Hernandez, R. V., Guerra-Moya, S. A., & Caballero-Rico, F. C. (2021). Acceptance and
assessment in student pair-programming: A case study. International Journal of
Emerging Technologies in Learning, 16(9), 4–19.
https://doi.org/10.3991/ijet.v16i09.18693

Sabarinath, R., & Quek, C. L. G. (2020). A case study investigating programming students' peer
review of codes and their perceptions of the online learning environment. Education and
Information Technologies, 25, 3553–3575.

Simon, B., & Hanks, B. (2008). First-year students' impressions of pair programming in CS1.
ACM Journal on Educational Resources in Computing, 7(4), 73–85.
https://doi.org/10.1145/1316450.1316455

Tan, P. H., Ting, C. Y., & Ling, S. W. (2009). Learning difficulties in programming courses:
Undergraduates' perspective and perception. ICCTD 2009 - 2009 International
Conference on Computer Technology and Development, 1, 42–46.
https://doi.org/10.1109/ICCTD.2009.188

Topalli, D., & Cagiltay, N. E. (2018). Improving programming skills in engineering education
through problem-based game projects with Scratch. Computers and Education, 120, 64–

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT
Vol. 1 4 , No. 1, 2025, E-ISSN: 2226-6348 © 2025

1065

74. https://doi.org/10.1016/j.compedu.2018.01.011
Toukiloglou, P., & Xinogalos, S. (2024). Effects of Collaborative Support on Learning in Serious

Games for Programming. Journal of Educational Computing Research.
https://doi.org/10.1177/07356331241296888

Ubaidullah, N. H., Mohamed, Z., Hamid, J., & Sulaiman, S. (2021). Improving novice students'
computational thinking skills by problem-solving and metacognitive techniques.
International Journal of Learning, Teaching and Educational Research, 20(6), 88–108.
https://doi.org/https://doi.org/10.26803/ijlter.20.6.5

Watson, C., & Li, F. W. B. (2014). Failure rates in Introductory Programming revisited.
Proceedings Conference on Innovation & Technology in Computer Science Education, 39–
44.

Weng, X., Ng, O. L., Cui, Z., & Leung, S. (2023). Creativity Development With Problem-Based
Digital Making and Block-Based Programming for Science, Technology, Engineering, Arts,
and Mathematics Learning in Middle School Contexts. Journal of Educational Computing
Research, 61(2), 304–328. https://doi.org/10.1177/07356331221115661

Xinogalos, S. (2014). Designing and deploying programming courses: Strategies, tools,
difficulties and pedagogy. Education and Information Technologies, 21(3), 559–588.
https://doi.org/10.1007/s10639-014-9341-9

Zhan, Z., Li, T., & Ye, Y. (2024). Effect of jigsaw-integrated task-driven learning on students'
motivation, computational thinking, collaborative skills, and programming performance
in a high-school programming course. Computer Applications in Engineering Education,
32(6). https://doi.org/10.1002/cae.22793

Zhang, J. H., Meng, B., Zou, L. C., Zhu, Y., & Hwang, G. J. (2023). Progressive flowchart
development scaffolding to improve university students' computational thinking and
programming self-efficacy. Interactive Learning Environments, 31(6), 3792–3809.
https://doi.org/10.1080/10494820.2021.1943687

Zheng, L., Zhen, Y., Niu, J., & Zhong, L. (2022). An exploratory study on fade-in versus fade-
out scaffolding for novice programmers in online collaborative programming settings.
Journal of Computing in Higher Education, 19, 489–516.
https://doi.org/10.1007/s12528-021-09307-w

Żyła, K., Chwaleba, K., & Choma, D. (2024). Evaluating Usability and Accessibility of Visual
Programming Tools for Novice Programmers—The Case of App Inventor, Scratch, and
StarLogo. Applied Sciences (Switzerland), 14(21). https://doi.org/10.3390/app14219887

