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Abstract 
This study explores the challenges and perspectives of students learning programming at a 
Malaysian polytechnic. The study seeks to analyze students's understanding of Problem 
Solving and Program Design (PSPD), the factors that contribute to poor performance in the 
course and the influence learning environments have on how well they perform. We surveyed 
236 students to obtain their demographic data and knowledge, skills, and attitudes toward 
programming education. The above shows that control structure topics were identified as 
problematic among students. Moreover, the study identifies a few challenges, including 
designing algorithms, debugging, and understanding programming syntax. The results also 
indicate that students favor more hands-on, applications-oriented approaches to the learning 
process, such as group discussion, pair programming, and laboratory work, rather than 
didactic lecture-based approaches. Consequently, the results from the study further revealed 
that students' reactions to computational thinking modules are' positive, which allows 
students to enhance their problem-solving and program design abilities. Seeing these 
outcomes indicates that some teaching methods, such as stress learning in pairs through pair 
programming and incorporating computational thinking, should be encouraged to improve 
the outcome of programming education. The exploration presents evidence-based strategies 
that lecturers can embed in their teaching to help alleviate students' struggles and 
understanding of programming principles. 
Keywords: Computational Thinking, Education, Pair Programming, Polytechnic, Problem 
Solving and Program Design 
 
Introduction 
Software and the tech sector have boomed, and that boom has created demand for coding 
skills, which are ubiquitous and require more than just memorizing syntax. Learning 
programming requires cultivating analytical thinking, algorithmic reasoning, and the ability to 
convert abstract ideas into working code. All around the world, the mastery of programming 
is becoming even more important, given that it is one of the most sought-after competencies 
in the contemporary labour market and will continue to be relevant in the future 
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(Amnouychokanant et al., 2021a; Kim & Lee, 2016; Żyła et al., 2024). According to Dengler 
and Matthes (2018), individuals with programming expertise can secure well-paying jobs and 
remain in high demand in the fast-changing digital economy. Programming is the methodical 
process of instructing a computer to perform specific tasks using a language the system can 
understand, often involving the manipulation of binary code. Hence, learning programming 
involves exposing students to languages like Java, Python, and C, where they create software 
programs (Ching et al., 2018). 
 
Proficiency in programming constitutes an essential competency requisite for students 
pursuing disciplines within the Information Technology and Computer Science program 
(Ubaidullah et al., 2021). The fundamental aim of the programming course is to cultivate 
expertise and proficiency, with the overarching goal of producing adept graduates poised for 
success in the programming domain (Rahim et al., 2018). Other than that, effective resolution 
of programming problems necessitates a confluence of diverse skills. These skills include 
systematic thinking (Papadakis et al., 2016), algorithmic thinking (Angeli, 2022; Malik et al., 
2021), problem-solving skills (Erol & Çırak, 2022; A. F. Lai & Yang, 2022; Topalli & Cagiltay, 
2018), creativity (Laura-Ochoa & Bedregal-Alpaca, 2022; Weng et al., 2023), cognitive 
abilities, and the strategic utilization of problem-solving approaches (Mohd Yusoff et al., 
2021).  
 
Many students face difficulties and barriers during the early stages of learning programming, 
especially novices (Alshaye et al., 2018; Cheah, 2020; Husin et al., 2020; Mohd Rum & Zolkepli, 
2018; Zheng et al., 2022). Programming courses often have high failure and student dropout 
rates (Chuang & Chang, 2024; Figueiredo & García-Peñalvo, 2024; Huang et al., 2024; Roque-
Hernandez et al., 2021). A study by Bennedsen and Caspersen (2007) determine the average 
failure rate of students in programming courses. Results showed that 33% of students failed 
on average across 63 institutions (12.7%) worldwide. All over the world, around 650,000 
students fail programming courses every year, and they believe that the number of students 
who enrol in programming courses amounts to more than two million every year. 
 
Subsequently, Watson and Li (2014) expanded this investigation to 15 countries and 51 
institutions. Their data when they made the publication indicated a slightly better state of 
affairs, with pass rates for introductory programming courses at 67.7% and fail charges at 
32.3%. Even with this small drop, their study showed a significant obstacle that a third of 
students in these classes face: dropping out or withdrawing. Advancing this line of inquiry, 
Bennedsen and Caspersen (2019) administered an even larger survey of 161 institutions 
around the world, with a much lower average failure rate of 28% in programming courses. 
However, these studies highlight the challenges that are still present in computer 
programming education. To make this point even clearer, Topalli and Cagiltay (2018) noted 
failure rates exceeding 50%, while Cárdenas-Cobo et al. (2021) indicate that the pass rate in 
programming courses did not exceed 43%, which reflects the continuing challenges found in 
this area of study. 
 
Problem-solving in programming entails an in-depth comprehension of the challenge at hand 
and devising a well-thought-out strategy prior to commencing the coding phase (Cheah, 2020; 
Rahim et al., 2018). A major issue of teaching Computer Science is that students often have 
poor problem-solving skills (Cárdenas-Cobo et al., 2021; Kadar et al., 2021; Mohd Noor et al., 
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2021; Piwek & Savage, 2019). Furthermore, students often encounter difficulties in 
comprehending questions and internalizing core concepts, which impedes their capacity to 
formulate strategic methodologies and effectively tackle programming problems (Mohd Rum 
& Zolkepli, 2018). According to Hai Hom and Abdul Talib (2020), students struggled to 
comprehend problem-solving questions and were incapable of planning steps to solve 
programming problems. The students also had difficulties understanding basic programming 
concepts (Azhar & Adnan, 2022). When they have the problem-solving phases, day-to-day 
focus on steps that students simply know to convert problem statements to get onto a PC 
program without actually going through the activities that would area of the solution (Malik 
& Coldwell-Neilson, 2017). 
 
The learning of programming was shown to have a negative impact on students that can lead 
to bad outcomes in terms of academic grades and future careers. Robins et al. (2003) insist 
that early programming challenges result in students leaving and not having a strong self-
image, which is critical to their pursuing futures in the domain. Correspondingly, problems in 
comprehension of programming concepts may have an impact on the overall academic 
performance of the students thus giving rise to poor performance in assignments as well as 
exams (Lahtinen et al., 2005).  
 
Polytechnics are key institutions in Technical and Vocational Education and Training (TVET) 
which are beginning to tackle these challenges with programs designed to teach 
programming. Polytechnics form a part of the factors for a highly skilled national workforce. 
Thus, polytechnics are tasked with a dual responsibility to produce academically and 
technically competent graduates who are more ethical and fully enabled to meet the 
challenges of the 21st-century workforce. Students enrolled in the Diploma in Information 
Technology (DIT) program at Polytechnics will be taught as a part of the Polytechnics in DIT 
program. They will take the first course available, Problem Solving and Program Design 
(PSPD), through the first semester. PSPD serves as a prerequisite for the more advanced 
programming courses that follow. Therefore, mastering programming fundamentals is 
essential; without it, students may struggle to succeed in more advanced programming 
courses. This strong foundation is crucial for their future learning and development.  
 
Specifically, the study aims to achieve the following objectives: (i) evaluate students' 
comprehension of key topics in the PSPD course; (ii) analyze students' learning programming 
difficulties; (iii) examine contributing factors to unsatisfactory performance in programming 
courses; (iv) explore optimal learning settings that facilitate learning programming and (v) 
analyze students' perceptions of effective programming learning strategies. By identifying 
these challenges, polytechnics can better support students in overcoming obstacles and 
enhancing their programming proficiency. The findings will offer evidence-based 
recommendations for lecturers to improve teaching approaches and facilitate more effective 
learning experiences. Students can achieve success in their academic and professional 
careers. 

 
Research Methodology 
This study, conducted at a Malaysian polytechnic, is a descriptive study that aims to 
investigate students' viewpoints on learning challenges and discern their preferences for 
effective methods of learning programming. Therefore, a quantitative survey was used to 
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obtain relevant data to answer the research questions presented in this study. This study uses 
a questionnaire instrument adapted and modified from the questionnaire of Tan et al. (2009). 
Two experts specializing in programming education and one expert in instructional design 
validated this instrument. They have been teaching programming and instructional design for 
more than five years.  
 
Table 1 provides an overview of the questionnaire, divided into four sections. Section A 
gathers basic student demographics, giving us a snapshot of the participants' backgrounds. 
Meanwhile, Section B looks at the experience in programming and knowledge of computing, 
helping us understand how familiar the respondents are with programming. Section C focuses 
on learning difficulties, factors for unsatisfactory performance, settings that facilitate 
learning, and effective strategies in programming education, aiming to identify the obstacles 
students face and the approaches that work best in helping them learn. In Section A, 
descriptive statistics present the respondents' demographic data, utilizing frequency and 
percentage to provide insights into their backgrounds. Consequently, students will respond 
based on the provided scale for sections B to C. The items in Section B use a 4-point Likert 
scale, which is 1=Never, 2=Weak, 3=Moderate, and 4=Strong. Meanwhile, the items in Section 
C use a 5-point Likert scale, which is 1 = Strongly Disagree, 2 = Disagree, 3 = Uncertain, 4 = 
Agree, and 5 = Strongly Agree.  
 
Table 1 
Questionnaire information 

Section Description 

A Student demographics 
B Students' comprehension of key topics in the Problem Solving and Program 

Design course 
C Difficulties in learning programming 

Factors to unsatisfactory performance in learning programming 
Learning settings that facilitate learning programming 

Perceptions of effective programming learning strategies 

 
A pilot study was conducted on 35 respondents at a polytechnic. After the pilot study, the 
data was analyzed to determine the level of reliability of the questionnaire items using 
Cronbach's alpha. According to Creswell (2011), reliability means that the scores of the 
instruments used in the study are stable and consistent. Generally, reliability is represented 
with a numerical coefficient between 0.0 and 1.0, where higher values indicate higher 
reliability (Gay et al., 2011). The Cronbach's alpha value for the questionnaire is 0.858. This 
shows that the items in the questionnaire are highly reliable. This is because a Cronbach's 
alpha value of more than 0.7 indicates that the item has a high level of reliability (Farisiyah et 
al., 2025; Hair et al., 2009; Nunnally & Bernstein, 1994). Data from the survey was analyzed 
using Statistical Program for Social Science (SPSS) version 29.0 to obtain mean scores, 
percentages, and standard deviations. The researcher analyzed the mean score using the 
interpretation of mean scores proposed by Nunnally and Bernstein (1994). Table 2 presents 
the interpretation of the mean scores from Nunnally and Bernstein's (1994), which four levels 
of suggested interpretation mean score. 
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Table 2 
Mean Score Interpretation  

Mean Scale Level 

1.00 – 2.00 Low 
2.01 – 3.00 Medium Low 
3.01 – 4.00 Medium High 
4.01 – 5.00 High 

 
Results and Discussion 
Student Demographics 
Section A of the survey questionnaire focused on the demographic information of the 
respondents participating in this study. This study involved 236 respondents from the DIT 
program who are enrolled in the PSPD course. Table 3 presents a summary of the 
demographic characteristics of the respondents, including gender, ethnicity, and eligibility for 
polytechnic admission. According to the data in Table 3, there were 143 male students 
(60.6%) and 93 female students (39.4%). The ethnic breakdown revealed that 193 students 
identified as Malay (81.8%), 30 as Indian (12.7%), nine as Chinese (3.8%), and four as 
belonging to other ethnic groups (1.7%). Concerning eligibility for polytechnic admission, the 
results revealed that 220 respondents (93.2%) had the Sijil Pelajaran Malaysia (SPM) as their 
entry qualification. In comparison, 15 respondents (6.4%) had a Community College 
Certificate, and one respondent (0.4%) belonged to other categories. Regarding programming 
experience in section B, 89 students (37.7%) reported having programming experience. 
Meanwhile, 147 students (62.3%) had no programming experience.  
 
Table 3 
Student Demographics 

Item Category Frequency Percentage (%) 

Gender Male 
Female 

143 
93 

60.6 
39.4 

Race Malay 
Chinese 
Indian 
Others 

193 
9 
30 
4 

81.8 
3.8 
12.7 
1.7 

Eligibility to enter the 
polytechnic 

SPM 
Community College 
Others 

220 
15 
1 

93.2 
6.4 
0.4 

Proficient in using computers Yes 236 100.0 
 No 0 0.0 
Experience in programming Yes 89 37.7 

No 147 62.3 

 
Evaluate students' comprehension of key topics in the Problem Solving and Program Design 
course 
Table 4 illustrates the students' comprehension of topics related to the PSPD course. The 
table is organized from lowest to highest mean values. The table displays students' average 
scores and standard deviations for the topics. Overall, the mean values for all categories range 
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from 2.89 to 3.08, indicating a medium level of understanding. Control structures in problem-
Solving involving sequence, selection, and repetition yielded a mean value of 2.89 (SD=0.706). 
This implies that control structures, which include sequence, selection, and repetition topics, 
are complex for students to learn (Aris, 2015; Caceffo et al., 2016; Cheah, 2020; Ma et al., 
2011; Robins et al., 2003; Xinogalos, 2014). 

 
Table 4 
Comprehension of topics in the Problem Solving and Program Design Course 

Topics Mean SD Interpretation 

Control structures in problem-solving (sequence, 
selection, repetition) 

2.89 0.706 Medium Low 

Using operators in a program 2.97 0.687 Medium Low 
Types and patterns in algorithms to solve 
a problem 

2.99 0.720 Medium Low 

Basic programming language 3.01 0.699 Medium High 
Problem-solving concept 3.02 0.687 Medium High 
Data and identifier 3.05 0.663 Medium High 
Programming life cycle 3.07 0.726 Medium High 
Fundamentals of programming languages 3.08 0.680 Medium High 

SD standard deviation  
 
Analyze Students' Learning Programming Difficulties 
The results, displayed in Table 5, are organized from the highest to the lowest mean values. 
The mean values, ranging from 3.22 to 3.34, indicate a medium-high difficulty in grasping 
essential programming concepts. The findings indicate that the highest mean value, 3.34 (SD 
= 0.916), shows that students struggle most with designing programs to solve specific tasks. 
This suggests they have difficulty creating algorithms, recognizing problems, devising 
solutions, and implementing their ideas through coding. Additionally, students face 
challenges with debugging, which has a mean value of 3.31 (SD = 0.960), and understanding 
syntax, with a mean value of 3.30 (SD = 0.864). These skills are fundamental to programming. 
Hence, structured techniques such as pseudocode or flowcharts can help students visualize 
and plan their solutions before coding, enhancing their understanding and problem-solving 
skills (Abidin et al., 2018; Hooshyar et al., 2015; Zhang et al., 2023). Therefore, lecturers 
should emphasize a step-by-step approach to problem-solving, encouraging students to break 
down complex problems into smaller, more manageable parts.  
 
Table 5 
Difficulties in Learning Programming 

Difficulty Mean SD Interpretation 

Designing a program to solve specific tasks 3.34 0.916 Medium High 
Finding errors from own program 3.31 0.960 Medium High 
Learning the programming language syntax  3.30 0.864 Medium High 
Understanding basic concepts of programming 
structure  

3.28 0.926 Medium High 

Using a program development environment  3.22 0.857 Medium High 

SD standard deviation  
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Examine Contributing Factors to Unsatisfactory Performance in Programming Courses 
The data presented in Table 6 highlight several factors contributing to students' unsatisfactory 
performance in a programming course. The two highest-ranking factors, with mean values of 
3.32 and 3.17, are the syllabus's emphasis on theory over practical application and the 
extensive number of topics covered each semester, classified as "Medium High." These 
findings suggest that the syllabus's structure and content may significantly impact students' 
challenges in the course. Other factors, with mean values ranging from 2.93 to 2.52 and 
categorized as "Medium Low," include the quality of lecturer presentations and attention, 
insufficient practical examples, and a lack of effective teaching methods. Additionally, issues 
such as low student motivation, malfunctioning lab computers, and an unconducive learning 
environment hinder performance, although to a lesser extent than syllabus-related issues. 
The relatively low mean scores for these factors indicate moderate concerns. Nevertheless, 
they still affect student outcomes in the programming course. 
 
Table 6 
Factors Contributing to Unsatisfactory Performance Programming Courses 

Factors Mean SD Interpretation 

The syllabus emphasizes theory over practical 
application 

3.32 0.930 Medium High 

The syllabus for each semester covers too many 
topics 

3.17 0.791 Medium High 

Lecturers' presentations and attention to students 
need improvement 

2.93 1.099 Medium Low 

Few practical examples are provided 2.71 1.115 Medium Low 
The teaching methods are not highly effective 2.63 1.004 Medium Low 
Students show low motivation toward learning 2.57 1.072 Medium Low 
The computers in the labs do not function properly 2.55 1.061 Medium Low 
The learning environment is not conducive to 
studying 

2.52 1.013 Medium Low 

SD standard deviation  
 
Explore Optimal Learning Settings that Facilitate Learning Programming 
The data presented in Table 7 highlights the learning environments that students find most 
conducive to learning programming. Interactive discussions with lecturers scored the highest 
mean value, 4.23 (SD = 0.805), indicating a "High" level of effectiveness in facilitating learning. 
Practical work in laboratory sessions is closely followed, with a mean score of 4.19 (SD = 
0.800), also rated "High." This suggests that students highly value hands-on practice. Group 
discussions with peers received a mean score of 4.14 (SD = 0.871), and pair programming 
scored 4.03 (SD = 0.894), both classified as "High," emphasizing the significance of 
collaborative learning approaches. Lecture-based learning has a slightly lower mean score of 
3.97 (SD = 0.901), categorized as "Medium High," indicating moderate effectiveness in this 
context. Solo programming received the lowest mean score of 3.07 (SD = 1.213) and was rated 
"Medium High". These results suggest a clear preference among students for interactive and 
collaborative learning environments. Collaborative learning positively impacts student 
collaboration in groups and the acquisition of programming knowledge (Zhan et al., 2024). 
Furthermore, collaborative learning can improve students' academic achievement 
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(Pimpimool, 2024) and learning outcomes (X. Lai & Wong, 2022; Toukiloglou & Xinogalos, 
2024) in learning programming.  
 
Table 7 
Optimal Learning Settings that Facilitate Learning Programming 

Learning settings Mean SD Interpretation 

Interactive discussions with lecturers 4.23 0.805 High 
Practical work in laboratory sessions 4.19 0.800 High 
Group discussions with peers  4.14 0.871 High 
Pair programming with a partner 4.03 0.894 High 
Engaging in lecture-based learning 3.97 0.901 Medium High 
Solo programming  3.07 1.213 Medium High 

SD standard deviation  
 
Assessing Students' Perspectives on the Effectiveness of Modules in Programming Education 
The data presented in Table 8 highlights the student perceptions of effective programming 
learning strategies. The mean score of 3.93 for the learning module indicates an essential 
perspective on its usefulness in learning problem-solving learning and program design. 
Similarly, students favourably view the inclusion of computational thinking elements, such as 
decomposition, abstraction, generalization, algorithms, and evaluation, with a mean score of 
3.89 (SD=0.809) for improving problem-solving abilities. In contrast, opinions on solo 
programming are more neutral, with a mean score of 3.16 (SD=1.098). This reflects more 
significant variability in student opinions; some find it valuable for independent work, while 
others perceive it as less beneficial. Finally, pair programming, with a mean score of 3.94 
(SD=0.838), showed that students strongly agreed with learning with peers. This 
demonstrates a consistent viewpoint that pair programming enhances problem-solving 
through peer feedback. The analysis indicates that polytechnic students largely agree on the 
benefits of structured learning modules, elements of computational thinking, and pair 
programming in improving their problem-solving and program design skills. Correspondingly, 
these findings suggest that integrating computational thinking, pair programming, and 
structured learning modules may offer a well-rounded approach to accommodating diverse 
learning preferences in programming education. 
 
Table 8 
Perceptions of Effective Programming Learning Strategies 

Perspectives Mean SD Interpretation 

Learning modules help in learning problem-solving 
and program design 

3.93 0.801 Medium High 

Elements of computational thinking, such as 
decomposition, abstraction, generalization, 
algorithms, and evaluation, aid in learning 
problem-solving and program design 

3.89 0.809 Medium High 

Solo programming contributes to learning 
problem-solving and program design 

3.16 1.098 Medium High 

Pair programming is seen as beneficial for learning 
problem-solving and program design 

3.94 0.838 Medium High 

SD standard deviation  
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According to Lye & Koh (2014), lecturers can use various approaches to teach programming, 
including pair and solo programming. In industry, the time allocated by a software developer 
or programmer to perform work is 30% programming time alone or solo, 50% time with a 
partner (pair programming), and 20% time with two or more partners (Nagappan et al., 2003). 
Current programming education emphasizes individual learning or solo programming (Garcia, 
2021). Implementing pair programming can transfer knowledge between students, and 
scaffolding occurs through communication (Demir & Seferoglu, 2021). Both solo and pair 
programming approaches have positive effects on learning programming. Students report 
that the solo programming approach makes them more confident and better understand the 
computer programs they produce (Simon & Hanks, 2008). Furthermore, solo programming 
positively affects coding achievement (Demir & Seferoglu, 2021). The study by Beasley & 
Johnson (2022) reported that the average assignment and exam scores for students who used 
the pair programming approach obtained higher scores. Therefore, in an academic context, 
learning programming can be carried out solo or in pairs by adapting the approach 
implemented by the industry.  
 
Problems in learning programming may be caused by disorganized thinking and a lack of 
computational thinking elements (Habib et al., 2021). Computational thinking is an essential 
21st-century skill for computer scientists and all humans (Morris & Liu, 2020). According to 
Lee & Cho (2020), computational thinking, the core of computer science, is an essential 
thinking process for solving problems by describing them so they can be solved effectively. 
Computational thinking skills are cognitive skills that can be used in teaching and learning the 
programming process (Mohd Yusoff et al., 2020). Moreover, emphasis on computational 
thinking elements has a positive impact on student achievement in various fields, which are 
mathematics (Columba, 2020; Mohd Fadzil et al., 2022), chemistry (Chongo et al., 2021), 
science (Lapawi & Husnin, 2020) and programming (Amnouychokanant et al., 2021b; Hai Hom 
& Abdul Talib, 2020; Namli & Aybek, 2022; Ou Yang et al., 2023; Polat & Yilmaz, 2022). Then, 
educators need to consider using strategies for better learning programming to help minimize 
student difficulties (Sabarinath & Quek, 2020) and thus help improve student achievement. 
Teaching and learning programming can be improved by developing innovative teaching 
approaches (Kadar et al., 2022). Therefore, the programming teaching approach to integrate 
computational thinking into teaching and learning should be applied as effectively as possible. 
 
Conclusion 
The results of this study provide the current state of programming education among 
polytechnic students, revealing the challenges and methods that can be used in learning 
programming. The study revealed that students struggle to design programs for specific tasks, 
debug errors, and understand programming syntax. These challenges stem from a heavy 
emphasis on theoretical content, a dense syllabus, and limited opportunities for hands-on 
practice, which are essential elements for building strong programming skills. The dense 
syllabus, in particular, makes it difficult for students to fully grasp basic programming 
concepts, leaving them overwhelmed and underprepared. One of the most challenging topics 
is control structures, which include sequencing, selection, and iteration. Students find this 
topic particularly difficult because it requires logical reasoning and abstract thinking, but still 
underdeveloped skills. Additionally, many students have no prior experience with 
programming, making it more difficult for them to grasp basic concepts such as algorithmic 
thinking and program design. This lack of foundational knowledge dramatically hinders their 



INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT  
Vol. 1 4 , No. 1, 2025, E-ISSN: 2226-6348 © 2025 

1060 

ability to effectively apply problem-solving techniques, leaving them unprepared to meet the 
demands of a programming course. 
 
Based on these findings, several suggestions can be made to improve programming 
education. First, lecturers should focus on practical methods when learning programming by 
ensuring that students can apply theoretical concepts in real-world scenarios. The use of 
structured problem-solving approaches, such as pseudocode and flowcharts, should be 
emphasized so that students can break down complex programming tasks. In addition, the 
syllabus should be reviewed to ensure a balance between theoretical content and practical 
applications. In addition, reducing the topics covered each semester allows for deeper 
exploration of core concepts. Integrating computational thinking involving decomposition, 
abstraction, generalization, algorithms, and evaluation can improve students' problem-
solving and program design skills. Furthermore, incorporating more collaborative learning 
strategies, such as pair programming and peer feedback, can also increase student 
engagement and understanding. Interactive discussions between students and lecturers 
should be emphasized because students like this learning method. These findings suggest that 
an approach that integrates computational thinking, pair programming, and structured 
learning modules can improve students' understanding of programming. A more conducive 
teaching approach at polytechnics can help students overcome challenges and achieve 
greater success in programming education. 
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