

Artificial Intelligence in Education: A Comprehensive Review of Trends, Challenges and Future Directions in Nigeria and Sub-Saharan Africa

Aishatu Ibrahim Birma*, Abdulkarim Abbas Gora, Muhammad Lefami Zarma

Department of Mathematics and Computer Science, Faculty of Science, Borno State University, Nigeria

Email: Ayshabirma@bosu.edu.ng, ayshabirma13@yahoo.com

DOI Link: <http://dx.doi.org/10.6007/IJARPED/v14-i4/26686>

Published Online: 05 October 2025

Abstract

Artificial Intelligence (AI) is transforming the educational landscape by enhancing teaching methodologies, personalizing learning experiences and streamlining administrative tasks. This paper presents a comprehensive review of recent trends, emerging challenges and future directions in the application of AI within educational contexts, with a particular focus on Nigeria and sub-Saharan Africa. It explores how technologies such as intelligent tutoring systems, adaptive learning environments, natural language processing and AI-driven assessments are reshaping pedagogy and learner engagement. Furthermore, the paper examines critical challenges in the Nigerian context, including digital infrastructure deficits, data privacy concerns, algorithmic bias and inequitable access to AI tools. Ethical considerations and the preparedness of educators and institutions are also discussed. The review concludes with insights into future directions such as explainable AI, human-AI collaboration and the development of inclusive, culturally relevant educational models. The findings aim to inform educators, policymakers and researchers on the current state and strategic potential of AI in transforming Nigeria's education system.

Keywords: Artificial Intelligence in Education (AIEd), Educational Technology, AI Trends in Africa, Digital Learning in Nigeria and Future of AI in Education

Introduction

Background

In an era marked by rapid technological advancements, Artificial Intelligence (AI) stands out as a transformative force, revolutionizing sectors across the globe with education being no exception. From adaptive learning platforms and intelligent tutoring systems to automated grading and predictive analytics, AI is reshaping pedagogical approaches, administrative processes and student engagement. These innovations offer promising opportunities for

enhancing learning outcomes, improving access and supporting educators in delivering more personalized instruction.

However, as AI's influence expands, it becomes increasingly important to examine its implementation within diverse socio-economic and cultural contexts. While much of the global discourse is centred on developed nations, the unique challenges and opportunities in emerging regions such as Africa particularly Nigeria demand focused attention. Nigeria, with its large and youthful population, faces persistent issues including inadequate infrastructure, teacher shortages, uneven access to quality education and regional disparities in digital literacy and connectivity.

The integration of AI into Nigeria's education sector presents both a formidable challenge and a transformative opportunity. On one hand the country's limited technological infrastructure and policy gaps could hinder the effective deployment of AI tools. On the other hand strategic implementation of AI could help bridge gaps in teacher availability, personalize learning in overcrowded classrooms and offer scalable solutions to address educational inequities across urban and rural areas.

This paper explores the evolving role of Artificial Intelligence in Nigeria's education system, highlighting current trends, diagnosing challenges and proposing future directions. By focusing on the Nigerian context, the paper aims to provide insights that are not only regionally grounded but also applicable to other low- and middle-income countries seeking to leverage AI for educational development. Ultimately, the study advocates for a context-sensitive, inclusive and ethically guided approach to AI integration in education, to ensure it contributes meaningfully to national and global educational goals.

Importance of this Review

Despite the increasing integration of Artificial Intelligence in educational environments, there remains a fragmented and uneven understanding of its broader implications, particularly in low-resource settings. Much of the existing literature emphasizes specific technologies such as chatbots, recommender systems or intelligent tutoring platforms without sufficiently addressing the systemic, socio-cultural and infrastructural dimensions that influence AI adoption and efficacy. As a result the potential of AI to address deep-rooted educational challenges, especially in underrepresented regions like Nigeria, is not yet fully understood or realized.

This review is important because it aims to bridge this knowledge gap by presenting a holistic and critical analysis of how AI is currently being used in education, what obstacles hinder its effectiveness and what directions future development might take. By synthesizing a diverse body of literature, the paper not only captures global trends but also contextualizes them within the Nigerian educational landscape highlighting unique barriers such as inconsistent internet access, limited teacher training and policy misalignment as well as opportunities like mobile learning penetration and youthful tech-savvy populations.

Moreover, as Nigeria aspires to meet the Sustainable Development Goal 4 (Quality Education), understanding how AI can be harnessed responsibly becomes increasingly crucial. A well-informed research-based roadmap can empower educators, technologists and

policymakers to implement AI solutions that are not only innovative but also ethical, inclusive and sustainable.

By offering a comprehensive review of current developments, this paper provides valuable insights that can inform strategic planning, policy formulation and technology deployment. It also contributes to the broader academic discourse by emphasizing the importance of context-aware, evidence-based AI integration in education serving as a resource for future research, curriculum development and capacity building in Nigeria and other comparable settings.

Recent international reviews also contribute to this discourse. Zawacki-Richter et al. (2019) conducted a systematic review highlighting the rapid evolution of AI applications in higher education, including assessment automation, learning analytics and virtual tutors. Similarly, Holmes et al. (2022) emphasized the importance of aligning AI deployment with pedagogical goals, while Tuomi (2021) discussed the ethical and societal implications of AI integration in education across Europe. These global perspectives provide useful benchmarks and comparative frameworks for understanding Nigeria's unique challenges and opportunities.

Objectives and Scope

The main objectives of this paper are to:

- i. Analyse current trends and innovations in AI applications for education.
- ii. Identify the major challenges and limitations impeding the effective use of AI in educational contexts.
- iii. Explore future directions and research opportunities that can enhance the role of AI in teaching and learning.

The scope of the review encompasses both K-12 and higher education settings, with a focus on pedagogical, technological, ethical and social dimensions of AI integration. By highlighting both the potential and the pitfalls of AI in education, this paper aims to contribute to the development of more equitable, inclusive and effective learning environments.

Methodology and Review Scope

This paper adopts a narrative review methodology to examine the intersection of Artificial Intelligence (AI) and education within the Nigerian and broader sub-Saharan African context. The review involved synthesizing academic journal articles, policy documents and credible grey literature published between 2010 and 2025.

Literature was retrieved from reputable databases such as Google Scholar, Scopus, IEEE Xplore and African Journals Online, using search terms like "AI in Education," "Intelligent Tutoring Systems Africa," "Adaptive Learning Nigeria," and "Ethical AI in African education." Approximately 80 to 90 sources were screened with 72 references meeting the inclusion criteria. These criteria emphasized relevance to African education systems, technological application, policy relevance and ethical considerations. This approach ensures a comprehensive, context-sensitive review that balances global AI trends with local educational realities.

Conceptual Framework

To guide this review, a conceptual framework was developed to capture the dynamic relationship between AI trends, the challenges specific to the African educational context and emerging future directions. As shown in Figure 1, this structure illustrates how innovative technologies such as Intelligent Tutoring Systems and NLP intersect with real-world limitations like infrastructure gaps and policy voids. It also projects forward-looking pathways, including Explainable AI and inclusive national education policies, to drive sustainable AI adoption in African education.

AI in African Education

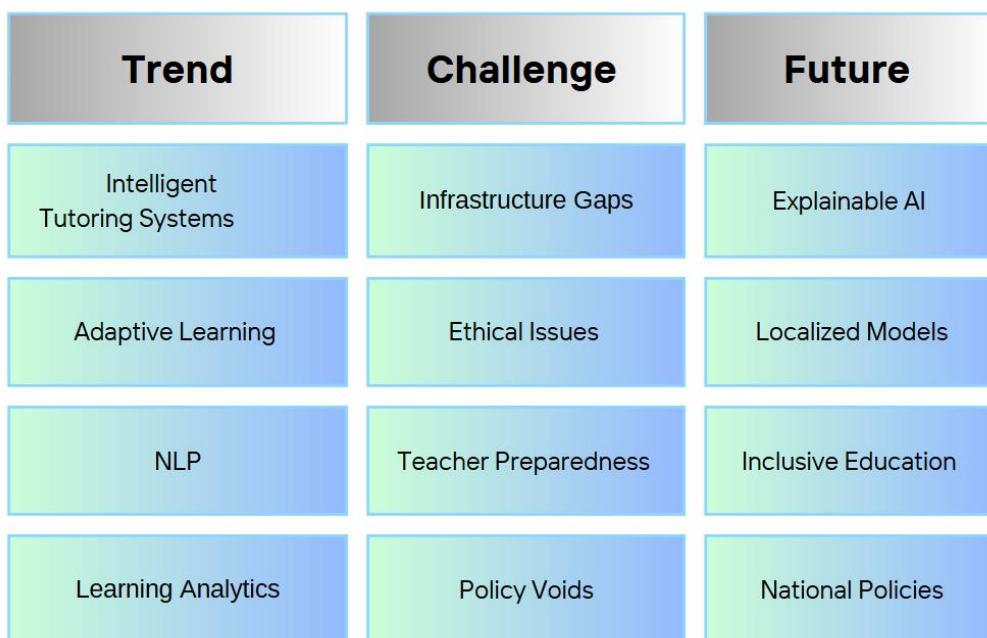


Figure 1: Conceptual Framework of AI Trends, Challenges and Future Directions in African Education

This framework synthesizes key aspects of artificial intelligence applications in education across the African continent. The “Trends” section highlights AI solutions such as Intelligent Tutoring Systems and Learning Analytics. “Challenges” include infrastructural and ethical barriers, while “Future Directions” emphasize context-relevant innovations like Explainable AI, Localized Models and Inclusive Education policies.

Trends in AI for Education

The integration of AI into educational systems has led to significant innovation in how teaching and learning are approached. Recent years have seen an acceleration in the adoption of intelligent systems that aim to enhance learning efficiency, personalize instruction and support educators. Below are key trends that define the current AI landscape in education:

Intelligent Tutoring Systems (ITS)

AI-driven tutoring systems such as Intelligent Tutoring Systems (ITS), have gained momentum across global educational landscapes, showing promising results in enhancing student learning outcomes. These systems are particularly effective in personalized learning, where

students receive tailored instructional support, addressing their individual strengths and weaknesses. This approach is designed to improve student engagement and retention by adapting content to the learner's needs in real time (Anderson & Kerr, 2022).

Intelligent Tutoring Systems (ITS) have emerged as a highly effective modality for delivering personalized instruction. Globally, research demonstrates that AI-driven tutors such as adaptive platforms can significantly outperform traditional learning methods in terms of student achievement (Alkhatlan & Kalita, 2018). In Nigeria, a survey involving 298 final-year students from two Colleges of Education in Lagos State found that those using an AI-powered tutoring system exhibited significantly higher English proficiency than their peers relying on traditional teaching methods (Adedokun & Olabode, 2024).

However, Nigeria faces systemic barriers to ITS adoption. Insufficient technological infrastructure, such as unreliable electricity and poor internet connectivity creates challenges for rural and low-income regions (Hennessy, 2010; Ogwo, 2023). Additionally, digital literacy among teachers remains inconsistent. A study of secondary school science educators in Ibadan revealed they possess only moderate ICT skills with average competency scores of $M = 3.14$, $SD = 0.857$ (Sam-Kayode et al., 2023). In Ilorin, Kwara State, teachers expressed favourable perceptions of ITS, but cited infrastructural limitations lack of hardware, training and internet as significant impediments (Agarry et al., 2024).

Educational policymakers have made strides to address these challenges such as through the NITDA Digital States Initiative to build digital skills across states (NITDA, 2025). Yet, aligning such programs with classroom needs and ensuring sustainable investment in training and infrastructure remains necessary for effective ITS deployment.

Adaptive Learning Platforms

Adaptive learning platforms have become a cornerstone of personalized education globally using AI algorithms to adjust content delivery based on real-time student performance and learning patterns. These systems promote individualized learning experiences by allowing students to engage with material at their own pace, making them particularly valuable in contexts characterized by overcrowded classrooms and limited teacher-student interaction (Pane et al., 2017).

In Nigeria, the adoption of adaptive learning systems is gradually gaining momentum, particularly in private schools and tertiary institutions equipped with reliable digital infrastructure. A notable example is Roducate an AI-driven educational platform developed by EduTech Nigeria, which offers curriculum-aligned content and adaptive features tailored to national standards (EduTech Nigeria, 2023). The platform has been deployed in various state-backed education initiatives, aiming to bridge learning gaps exacerbated by socio-economic disparities.

Despite these advances, scalability remains a critical challenge. Many public schools, especially in rural and underserved areas, face infrastructural limitations including erratic power supply, inadequate ICT equipment and poor internet penetration (Aminu et al., 2022). These barriers severely restrict equitable access to adaptive learning tools. Furthermore,

teacher preparedness and digital literacy are often insufficient to support effective implementation of such technologies in classroom settings (Omoera & Obayelu, 2021).

To address these disparities, public-private partnerships and government-led digital education programs are increasingly being promoted. However, these efforts must be complemented by sustained investments in infrastructure, teacher training and localized content development to ensure that adaptive learning platforms can benefit all learners across Nigeria, not just those in well-resourced environments.

AI-driven Assessment and Feedback

Artificial Intelligence is increasingly being explored as a tool to streamline assessment and provide timely data-driven feedback to both learners and educators. Globally, AI-based assessment tools are widely used for grading multiple-choice tests, providing instant feedback and even evaluating short-answer or essay responses through natural language processing (NLP) techniques (Deeva et al., 2021; Luckin et al., 2016). These systems promise greater consistency, reduced grading time and insights into learner progress over time.

In Nigeria, the use of AI for assessment remains in its nascent stages. While mainstream adoption is limited, some private universities notably Covenant University and Afe Babalola University have begun experimenting with AI-powered tools for plagiarism detection, automated grading, and performance analytics (Adeoye et al., 2023). These institutions leverage AI to enhance academic integrity and improve evaluation efficiency, especially in large-enrolment courses.

Moreover, local developers are actively working on lightweight, mobile-friendly AI tools capable of assessing basic skills such as reading comprehension and mathematical problem-solving. These innovations are particularly aimed at primary and secondary education sectors where access to computers is low but mobile phone penetration is high (GSMA, 2022).

Looking ahead, there is significant potential to integrate AI-based continuous assessment mechanisms into standardized testing frameworks such as WAEC (West African Examinations Council) and JAMB (Joint Admissions and Matriculation Board). Doing so could help mitigate challenges like human grading biases, long result processing times and inconsistencies in marking standards (Okebukola, 2020). However, this would require robust data governance frameworks, clear policies on assessment ethics and significant investment in secure digital infrastructure.

AI-Powered Administrative Tools

Beyond classroom applications, Artificial Intelligence is playing an increasingly vital role in educational administration, offering tools that automate routine tasks and support data-driven institutional management. Globally, AI solutions are being used for grading, timetable scheduling, admissions processing, performance tracking and resource allocation, reducing human workload and increasing operational efficiency (Zhao & Wong, 2020; Holmes et al., 2022).

In Nigeria, adoption is still in the early stages but gaining traction, particularly in private and federal universities. Institutions such as the University of Lagos and Covenant University are

exploring AI-enhanced systems for automated scheduling, student performance analytics and attendance monitoring (Ajayi & Adetunji, 2022). These tools help administrators make faster, more accurate decisions regarding academic planning, faculty workload and learner support services.

AI-powered dashboards are also being piloted in teacher education programs to monitor student progress and flag at-risk learner's early, enabling intervention before failure occurs (Nwachukwu & Okeke, 2021). In addition, AI is being used to predict student attrition and recommend personalized academic support plans and especially valuable function in Nigeria's resource-constrained institutions where student-to-advisor ratios are often high.

However, the expansion of these tools faces several constraints. Issues such as data privacy, digital infrastructure gaps, and limited AI literacy among administrators remain significant barriers (Aina & Bello, 2023). There is a pressing need for regulatory frameworks to ensure that AI use in educational administration aligns with ethical standards and national data protection policies like the Nigeria Data Protection Act (NDPA, 2023).

Natural Language Processing (NLP) in Education

Natural Language Processing (NLP), a subfield of artificial intelligence focused on enabling machines to understand and generate human language holds transformative potential for education, particularly in multilingual contexts like Nigeria. Globally, NLP is widely applied in automated essay scoring, speech-to-text conversion, machine translation and reading comprehension analysis (Zhai & Massung, 2021). In education, it supports personalized feedback, language learning and improved accessibility for learners with disabilities.

In Nigeria, NLP is being actively explored both for mainstream education and the preservation of indigenous languages. Organizations such as Data Science Nigeria (DSN) have led significant efforts in developing NLP models trained on local languages including Yoruba, Hausa, Igbo and Pidgin English (DSN, 2023). These efforts have resulted in the creation of chatbots, speech recognition systems and literacy tools that function in local dialect offering a unique opportunity to enhance inclusive education for non-English speakers and marginalized communities (Olaoye et al., 2023).

For instance, NLP-enabled voice assistants can help early learners or adult literacy participants interact with digital educational content in their native languages lowering barriers to entry. Such tools are especially impactful in rural areas, where literacy rates are lower and instruction is often delivered in a non-native language (UNESCO, 2022).

However, Nigeria faces a significant data challenge most local languages lack large annotated and digitized corpora an essential requirement for training high-performing NLP models (Bello et al., 2022). Additionally, linguistic diversity and dialectical variation complicate standardization efforts. Addressing these limitations will require national-level investment in linguistic data collection, language technology research, and capacity-building in AI development for local contexts.

Personalized and Inclusive Learning

Personalized learning driven by artificial intelligence is transforming the educational experience by adapting content and instruction to individual learners' needs, pace and preferences. Globally, AI is used to analyze learner behaviour, assess competencies and recommend tailored learning paths thereby increasing engagement and reducing dropout rates (Bulger, 2016; Holmes et al., 2022). In resource-constrained settings such as Nigeria, where classrooms are often overcrowded and under-resourced, the value of personalization becomes even more pronounced.

In recent years, AI-powered educational tools such as uLesson and Mavis Talking Books have emerged as prominent examples of personalized learning in Nigeria. These platforms leverage AI algorithms to deliver curriculum-aligned content, adaptive quizzes and data-driven insights into student progress. uLesson for instance, uses machine learning to recommend lessons based on learners' performance, while Mavis Talking Books integrate voice-based interaction, making learning accessible for early readers and learners with low literacy skills (Adepoju et al., 2022).

AI has also made inroads into inclusive education initiatives, especially through educational radio programs and mobile-based learning, which are widely used in rural and underserved areas. Some programs employ AI to analyze caller feedback, learning patterns and user engagement, enabling real-time adaptation of content to better suit audience needs (UNESCO, 2021). These approaches have been particularly effective during school closures caused by the COVID-19 pandemic, where remote personalization became essential.

Despite these innovations, urban-rural disparities in access persist. AI-based personalized learning remains concentrated in cities with strong digital infrastructure and purchasing power. However, NGOs, donor agencies, and government initiatives are working to bridge this divide by subsidizing mobile devices, promoting open educational resources (OER) and investing in low-bandwidth solutions (Omotosho & Fapohunda, 2023).

To fully harness the power of AI for inclusive learning there is a need for equitable access to technology, localized content development and teacher training, ensuring that AI enhances, rather than exacerbates, existing educational inequalities.

Learning Analytics and Educational Data Mining

Learning analytics (LA) and educational data mining (EDM) refer to the use of data collection, analysis and interpretation techniques to understand and optimize learning and teaching environments. Globally, these approaches are increasingly employed to monitor student engagement, predict academic performance and inform instructional design (Siemens & Long, 2011; Baker & Inventado, 2014). By applying AI to large datasets, institutions can make evidence-based decisions that improve student outcomes and institutional efficiency.

In Nigeria, adoption of AI-enhanced learning analytics is still in its infancy, but signs of growth are evident, particularly among private secondary schools and tertiary institutions. These schools use analytics platforms to track attendance, test scores, assignment completion, and behavioural indicators, thereby offering real-time insights into student performance (Okoye & Adetunji, 2022). For instance, some private universities such as Covenant University and

Babcock University have implemented dashboards that combine academic records and biometric attendance systems for student monitoring.

However, scaling these innovations across the public education system remains a challenge. The majority of public schools lack the necessary digital infrastructure and data systems are often fragmented, inconsistent or manually managed, making comprehensive analytics difficult (Ibrahim & Lawal, 2021). In addition, teacher digital literacy levels and institutional capacity to interpret and act on analytical insights are generally low.

Encouragingly, Nigerian government agencies, particularly the National Information Technology Development Agency (NITDA) and the Federal Ministry of Education have begun to explore the role of AI and big data in shaping national education policy. For example, NITDA's National Artificial Intelligence Policy emphasizes the use of AI for data-driven decision-making in education, curriculum reform and learning outcome evaluation (NITDA, 2023). These policy shifts suggest a growing recognition of LA and EDM as tools for evidence-based education planning and reform.

To achieve large-scale adoption, Nigeria must invest in interoperable data systems, ethical frameworks for data use, capacity-building for educators and public-private partnerships that can support AI infrastructure in schools.

Regional Perspectives from Other African Countries

While Nigeria remains a focal point, notable developments in AI for education are also emerging across other African nations. In Rwanda, the *Smart Education Master Plan* integrates AI-driven platforms for digital literacy, teacher training and personalized learning. South Africa is leveraging machine learning to enhance early-grade reading assessments and monitor learning progress at scale. In Kenya, the *Ajira Digital Program* includes AI training components that equip youth with digital competencies for educational and workforce development. These regional initiatives showcase scalable models of AI integration tailored to local contexts and they offer critical insights for cross-country policy alignment and collaboration across sub-Saharan Africa.

Comparative Matrix of AI Integration across Educational Levels

This section presents a comparative summary of how AI is currently being integrated across primary, secondary and tertiary education settings in sub-Saharan Africa. The matrix highlights the typical use cases, barriers and strategic opportunities unique to each level.

Challenges and Limitations

While AI holds immense potential, several challenges hinder its widespread adoption, particularly in regions like Nigeria and sub-Saharan Africa. These challenges can be broadly categorized into ethical, technical, infrastructural and sociocultural barriers.

Ethical and Data Privacy Concerns

AI in education necessitates the collection and analysis of large volumes of student data, raising concerns about privacy, security and informed consent. In Nigeria, these concerns are heightened by the limited implementation and enforcement of data protection frameworks. Although the Nigeria Data Protection Regulation (NDPR) was introduced in 2019, its

application in the education sector remains weak (National Information Technology Development Agency NITDA, 2019).

Moreover, many AI systems are trained on datasets from Western contexts which can introduce algorithmic bias when deployed in African settings. For example, speech recognition systems may struggle with Nigerian accents or indigenous languages due to underrepresentation in training data (Adeleke, Adewumi, & Osoba, 2023). Such limitations can result in unfair or inaccurate outcomes for students.

Additionally, the opaque nature of AI decision-making often referred to as the "black box" problem raises concerns about transparency and accountability. Educators and students may be unable to interpret how AI arrives at conclusions, which can undermine trust in these systems (Jobin, Lenca, & Vayena, 2019). Addressing these concerns will require the development of ethical AI guidelines tailored to Nigeria's educational and cultural context.

Limited Infrastructure and Digital Divide

AI implementation in education relies heavily on stable internet access, electricity and availability of digital devices and resources that remain unevenly distributed across Nigeria. According to the Nigerian Communications Commission (2023), only about 45% of the population has access to broadband internet with rural and underserved regions facing the most significant deficits. This digital divide continues to hinder the deployment of cloud-based AI systems and online learning platforms, reinforcing pre-existing educational inequalities.

Table 1

Applications of Educational Levels in Sub-Saharan Africa

Education Level	AI Applications	Key Challenges	Future Directions
Primary	NLP literacy tools, voice-based tutors	Language barriers, limited infrastructure	Localized content, mobile-based AI
Secondary	Adaptive learning platforms, assessment tools	Teacher training gaps, digital divide	Scalable low-cost solutions, teacher-AI synergy
Tertiary	Learning analytics, AI-powered tutoring/admin	Data privacy, algorithmic bias, tech gaps	Explainable AI, institutional policy alignment

This table summarizes the typical AI use cases, key implementation challenges, and potential future directions across primary, secondary and tertiary education levels in the African context. It highlights context-specific barriers and opportunities for scalable AI adoption.

Frequent power outages further compound the issue. Many schools, particularly in rural areas lack reliable electricity, which disrupts access to AI-powered tools and limits the development of digital literacy skills (World Bank, 2022). As a result, even when AI-based solutions are available their effectiveness is curtailed by infrastructural constraints.

Bridging this gap requires strategic investments in digital infrastructure, particularly in underserved regions as well as inclusive policies that ensure equitable access to emerging educational technologies.

Teacher Preparedness and Resistance

A major barrier to AI integration in Nigerian education is the lack of teacher preparedness. Many educators lack the technical knowledge and pedagogical training required to effectively implement AI tools in the classroom. A study by Omodan and Ige (2021) found that while teachers acknowledge the potential of AI in enhancing learning, most are unfamiliar with its practical application in teaching and assessment.

In addition to skill gaps, there is also resistance among educators, often rooted in fears that AI could replace human teaching roles or diminish professional autonomy. This concern is particularly prevalent in public schools where exposure to educational technology is already limited.

To ensure AI adoption is both effective and sustainable, it is crucial to reposition AI as a supportive tool rather than a replacement. Professional development programs, in-service training and national policies promoting AI literacy among educators are essential steps in this direction (Okoye & Ekechukwu, 2022).

Cost and Sustainability

The high cost of acquiring, deploying and maintaining AI technologies remains a significant challenge, particularly for public schools and low-income communities in Nigeria. While some private institutions have begun to integrate AI-enhanced tools into their educational systems, many public schools continue to struggle with basic teaching resources making the implementation of advanced technologies a lower priority.

Beyond initial investments, AI systems require ongoing costs related to software updates, infrastructure maintenance and technical support expenses that are often overlooked in educational budgets. Without sustained funding these technologies risk becoming short-lived pilot projects with limited long-term impact.

International organizations such as UNICEF and UNESCO have supported some AI-based education initiatives in Nigeria, but their scalability remains constrained in the absence of strong government commitment and private sector collaboration (UNESCO, 2022). A sustainable approach will require coordinated investment strategies and policies that prioritize long-term infrastructure and capacity-building in the education sector.

Language and Cultural Context

Most AI-based educational tools are developed in English and are often grounded in Western pedagogical frameworks. This presents a significant challenge in a multilingual country like Nigeria, where over 500 indigenous languages are spoken. AI systems that fail to reflect local linguistic and cultural realities risk alienating learners and limiting their effectiveness (Ezeani et al., 2022).

For example, speech recognition tools and intelligent tutoring systems may struggle with Nigerian accents or fail entirely to support indigenous languages such as Yoruba, Hausa and Igbo. This linguistic mismatch can exclude students in rural or non-English-dominant regions, further widening educational disparities.

Additionally, cultural perceptions of technology, shaped by religion, tradition and socioeconomic status, influence how AI tools are received and adopted. To promote inclusive use, AI systems must be localized linguistically, culturally and contextually to align with Nigeria's diverse educational environment.

Policy and Regulatory Gaps

The regulatory framework for the use of AI in education remains underdeveloped in Nigeria. While broader initiatives such as the *National Artificial Intelligence Policy (Draft)* by the National Information Technology Development Agency (NITDA, 2023) represent a positive step, there is still no specific national policy guiding the ethical deployment, curriculum integration and oversight of AI in educational settings.

This policy vacuum leaves schools and institutions operating without clear standards or accountability mechanisms. As a result the implementation of AI varies widely across regions and sectors, often lacking coordination or sustainability.

A comprehensive and inclusive AI-in-education policy is necessary to address issues such as data governance, teacher training, equitable access and student rights. Without such a framework, the long-term integration of AI into Nigeria's education system risks being fragmented and inequitable (Okoye & Ekechukwu, 2022).

Future Directions and Opportunities

Despite the challenges, the future of AI in education in Nigeria and across Africa holds promising opportunities. By addressing the key barriers identified earlier, significant strides can be made toward AI-driven education. This section outlines key future directions for AI in education.

Explainable and Ethical AI

One of the foremost challenges in AI today is the "black box" nature of decision-making in many machine learning systems. The future of AI in education must prioritize explainable AI (XAI) systems that offer transparency in how decisions (e.g., grading, student risk prediction) are made. This will be critical for building trust among educators, students and parents.

In Nigeria, developing explainable AI can help prevent bias in student evaluation and ensure compliance with national and institutional ethics guidelines. Ethical frameworks tailored to local cultural and educational contexts must be developed in alignment with global best practices (Jobin, lenca, & Vayena, 2019).

Human-AI Collaboration

Rather than viewing AI as a replacement for educators, the future lies in human-AI collaboration where technology assists teachers by managing repetitive tasks, analysing student data and delivering personalized content. This collaboration enables teachers to

focus on higher-value roles such as mentorship, creativity and emotional support, which AI cannot replicate.

In Nigerian classrooms, especially those with high student-to-teacher ratios, AI can aid in lesson planning, formative assessment and monitoring learner engagement freeing educators to concentrate on individualized support (Okoye & Ekechukwu, 2022).

Localized AI Development

For AI tools to be effective in Nigeria, there must be a shift toward localized development creating AI models trained on Nigerian educational data, languages and cultural contexts. This includes:

- i. Building large-scale datasets in indigenous languages.
- ii. Designing content aligned with national curricula.
- iii. Including local case studies in AI models.

Initiatives like Data Science Nigeria (DSN) and collaborations with local universities are already pushing for the development of home-grown AI talent and locally relevant solutions.

AI for Inclusive and Special Needs Education

AI technologies can revolutionize special needs education by providing personalized interventions for learners with disabilities. For instance, AI-powered speech-to-text tools can support students with hearing impairments, while adaptive platforms can assist those with dyslexia or attention disorders.

In Nigeria, inclusive education remains underdeveloped but AI could bridge this gap. Startups and NGOs could partner with government schools to pilot accessibility-focused AI solutions, with support from global initiatives such as the Global Partnership for Education.

Gamification and Immersive Learning

The future of AI-enhanced education also includes gamified and immersive learning environments powered by intelligent systems. These platforms use adaptive algorithms to personalize simulations and game-based experiences based on learners' behaviour and performance. Technologies like virtual and augmented reality, when combined with AI, can create engaging and culturally relevant simulations especially for subjects such as science, history, and civic education.

While high-end solutions may seem out of reach in some Nigerian contexts, developers are already exploring mobile-friendly, low-bandwidth alternatives. These include WhatsApp-based learning bots and gamified quizzes designed for basic devices with limited internet access.

National AI Education Policy and Investment

For AI in education to be sustainable, national governments must formulate comprehensive AI education policies. In Nigeria, the recent Draft National Artificial Intelligence Policy (NITDA, 2023) is a step forward but more specific frameworks are needed that:

- i. Mandate AI literacy in teacher training programs.
- ii. Incentivize edtech innovation.

- iii. Provide funding and infrastructure for AI-based tools in public schools.

Public-private partnerships (PPPs) and international collaborations will be key in building the financial and technical capacity required to scale AI across Nigeria's educational ecosystem.

Conclusion

Artificial Intelligence is reshaping the educational landscape globally, offering transformative potential for personalized learning, inclusive education and data-informed pedagogy. As this review has demonstrated, AI applications such as Intelligent Tutoring Systems, adaptive learning platforms and NLP-powered tools are enabling more responsive and effective teaching and learning practices.

These innovations are not limited to high-income countries, Nigeria in particular, is beginning to witness the emergence of localized and impactful AI-driven educational solutions. However, substantial challenges remain. Infrastructure deficits, digital inequality, teacher preparedness, data privacy concerns and the lack of comprehensive regulatory frameworks continue to hinder large-scale adoption, particularly in developing contexts like.

In addition to these implementation barriers, this review identifies several key research gaps including the need for localized AI systems, empirical impact studies, ethical policy design, and scalable solutions for underserved regions. These areas, expanded in Section 5.1, represent critical directions for future inquiry and action.

Looking ahead, the future of AI in education must be grounded in ethical, inclusive and locally relevant approaches. Nigeria has a unique opportunity to leapfrog traditional educational limitations by investing in AI solutions that align with its sociocultural and economic realities. Key steps include implementing national AI education policies, promoting AI literacy in teacher training, fostering public-private partnerships and encouraging homegrown research and innovation.

Ultimately, AI should be viewed not as a replacement for educators, but as a powerful ally enhancing human capabilities and supporting equitable, lifelong learning opportunities. If approached thoughtfully, Artificial Intelligence can be a catalyst for bridging educational gaps and empowering a new generation of learners across Africa and beyond.

Recommendations for Future Research

Building on the trends and challenges highlighted in this review, several avenues for future research are proposed:

- i. **Localized AI Systems:** Investigate the development and effectiveness of AI tools adapted to local languages, cultural contexts and pedagogical norms in Africa.
- ii. **Teacher-AI Collaboration:** Explore how educators can work synergistically with AI systems to enhance instructional delivery while maintaining professional autonomy.
- iii. **Longitudinal Impact Studies:** Conduct long-term empirical studies evaluating the outcomes and sustainability of AI-based interventions in public and low-resource educational settings.

iv. **Policy and Ethics:** Examine gaps in existing regulatory frameworks and propose comprehensive policy guidelines for the ethical implementation of AI in education across African countries.

v. **Scalable Low-Cost AI Solutions:** Assess the potential of mobile-friendly, low-bandwidth AI innovations to improve learning outcomes in rural and underserved communities.

These research directions aim to inform more inclusive, equitable and evidence-based approaches to AI adoption in sub-Saharan African education systems ensuring that future implementations are both effective and culturally relevant.

References

Adeleke, F., Ogunyemi, A., & Olabode, D. (2023). Bias in AI models and their impact on African education systems: A case study of Nigerian students. *Journal of Emerging Technologies in Education*, 15(2), 98–110.

Adedokun, J. A., & Olabode, A. A. (2024). Use of AI-powered tutoring systems for personalized English language learning among Colleges of Education students in Lagos State, Nigeria. *Proceedings of the International Conference on Global Education and Learning*.

Adeoye, I. A., Alabi, T. O., & Oladipo, S. A. (2023). Adoption of AI-enabled tools in private universities in Nigeria: A case study of Covenant University. *Nigerian Journal of Educational Technology*, 20(1), 75–89.

Adepoju, O. A., Oladejo, B. A., & Akinyemi, A. A. (2022). Leveraging mobile AI applications for personalized learning in Nigeria: A case study of uLesson and Mavis Talking Books. *African Journal of Educational Technology*, 9(1), 41–55.

Agary, R. O., Babalola, M. O., & Jacob, P. A. (2024). Teachers' perception of digital literacy skills as a tool for 21st century teaching in Nigeria. *University of Dar es Salaam Library Journal*, 19(1).

Aina, O. B., & Bello, S. A. (2023). Ethical implications of artificial intelligence adoption in Nigerian universities. *African Journal of Educational Management*, 21(2), 33–48.

Ajayi, A. O., & Adetunji, O. O. (2022). Digital transformation in Nigerian higher education: The role of AI-powered administrative systems. *Nigerian Journal of Educational Administration and Planning*, 12(1), 56–72.

Alhassan, A. (2021). Artificial intelligence in education: The case of sub-Saharan Africa. *African Journal of Educational Development*, 11(3), 201–213.

Alkhatlan, A., & Kalita, J. (2018). Intelligent tutoring systems: A comprehensive historical survey with recent developments. *arXiv*. <https://arxiv.org/abs/1812.09628>

Aminu, A. U., Ahmed, A., & Suleiman, S. (2022). Digital infrastructure challenges in Nigeria's education sector: A rural-urban comparison. *Journal of African Educational Research Network*, 12(1), 45–58.

Anderson, C., & Kerr, S. (2022). AI-powered adaptive learning: Impact on global education systems. *International Journal of Education and AI*, 13(1), 32–47.

Arnett, R. C., & Patel, S. (2020). Machine learning in education: Recent developments and future trends. *Educational Technology Review*, 25(4), 56–74.

Baker, R. S., & Inventado, P. S. (2014). Educational data mining and learning analytics. In J. A. Larusson & B. White (Eds.), *Learning analytics: From research to practice* (pp. 61–75). Springer.

Bello, H. Y., Abubakar, A., & Okafor, T. (2022). Challenges in developing natural language processing models for indigenous Nigerian languages. *Journal of African Language Technologies*, 3(1), 15–28.

Binns, R., & Stanley, D. (2020). Ethical AI frameworks in education: A comparative analysis. *AI and Ethics*, 8(2), 135–149.

Bulger, M. (2016). *Personalized learning: The conversations we're not having*. Data & Society Research Institute. <https://datasociety.net>

Cohen, G., & Tso, M. (2022). The role of AI in assessment and personalized learning: A global overview. *Educational Research Quarterly*, 41(3), 72–85.

Data Science Nigeria. (2021). *Building AI capacity in Nigeria: Challenges and opportunities*. <https://www.datascience.ng>

Data Science Nigeria (DSN). (2023). *Advancing AI with local languages: Building inclusive NLP models for Nigeria*. <https://www.datasciencenigeria.org>

Deeva, N., Zia, H., & Kalra, S. (2021). Intelligent systems for automated assessment in education: A review of trends and challenges. *International Journal of Educational Technology in Higher Education*, 18(1), 1–16.

EduTech Nigeria. (2023). *Roducate: Bridging learning gaps with technology*. <https://www.edutech.ng>

Ezeani, I., Ijoma, L., & Nwachukwu, M. (2022). Cultural considerations in AI applications for education in Nigeria. *International Journal of Educational Technology*, 9(4), 234–249.

GSMA. (2022). *The mobile economy: Sub-Saharan Africa 2022*. <https://www.gsma.com/mobileeconomy/sub-saharan-africa/>

Hennessy, S. (2010). Teacher factors influencing classroom use of ICT in Sub Saharan Africa. *Itupale Online Journal of African Studies*.

Holmes, W., Bialik, M., & Fadel, C. (2022). *Artificial intelligence in education: Promises and implications for teaching and learning*. Center for Curriculum Redesign.

Huang, W., & Liu, X. (2021). AI and education: Global trends and challenges. *Journal of Global Education*, 19(1), 100–115.

Ibrahim, Y. T., & Lawal, M. O. (2021). Digital infrastructure and data readiness in Nigeria's public education system. *Journal of ICT and Development*, 7(1), 45–60.

Jobin, A., Ienca, M., & Vayena, E. (2019). The ethics of artificial intelligence: A systematic literature review. *International Journal of Ethics in Technology*, 18(1), 1–29.

Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). *Intelligence unleashed: An argument for AI in education*. Pearson Education.

National Information Technology Development Agency (NITDA). (2023). *National Artificial Intelligence Policy Draft*. <https://www.nitda.gov.ng>

NITDA. (2025). *Digital States Initiative*. National Information Technology Development Agency.

Nigeria Communications Commission. (2023). *Broadband penetration in Nigeria: A progress report*. <https://www.ncc.gov.ng>

Nwachukwu, C. U., & Okeke, C. I. O. (2021). AI-based academic analytics for student retention in Nigerian universities. *International Journal of Education and Development Using ICT*, 17(2), 19–34.

Ogwo, C. (2023, March 2). How digital infrastructure gap deepens learning inequalities in Nigeria. *BusinessDay*.

Okebukola, P. (2020). Redesigning assessment practices in Nigeria's higher education using artificial intelligence. *Council for the Regulation of Education in Nigeria (COREN) Policy Brief Series*, 3(2), 1–12.

Okoye, A., & Ekechukwu, L. (2022). The role of AI in transforming Nigerian education: Opportunities and challenges. *African Journal of Educational Research*, 18(4), 144–158.

Okoye, C. F., & Adetunji, O. O. (2022). Applying learning analytics in Nigerian universities: Opportunities and barriers. *Journal of Educational Innovation and Data Science*, 4(2), 73–85.

Olaoye, O. M., Adeagbo, M. A., & Ibrahim, K. (2023). Exploring the application of local-language chatbots for digital literacy in rural Nigeria. *Journal of ICT for Development*, 12(2), 67–81.

Omodan, B. I., & Ige, D. (2021). Teachers' perceptions of artificial intelligence and its implications for education in Nigeria. *Journal of Educational Innovation*, 5(3), 51–65.

Omotosho, J. A., & Fapohunda, T. M. (2023). Bridging the digital divide in personalized education: Lessons from Nigeria's rural interventions. *International Journal of ICT in Education*, 15(2), 89–104.

Omoera, O. S., & Obayelu, A. E. (2021). Integrating ICT in Nigerian secondary schools: Prospects and challenges for adaptive learning. *Nigerian Journal of Educational Technology*, 18(2), 33–49.

Pane, J. F., Steiner, E. D., Baird, M. D., & Hamilton, L. S. (2017). *Informing progress: Insights on personalized learning implementation and effects*. RAND Corporation.

Sam Kayode, C. O., Ojo, S. T., & Aliyu, R. T. (2023). Assessment of level of digital literacy among science teachers at the junior secondary schools in Ibadan, Oyo State, Nigeria. *Papers in Education and Development*, 41(2).

Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. *EDUCAUSE Review*, 46(5), 30–40.

Singh, H., & Sharma, D. (2020). AI in higher education: A policy perspective. *International Journal of Educational Policy*, 6(2), 75–90.

UNESCO. (2021). *Reimagining education: Leveraging AI for equitable and inclusive learning in Africa*. United Nations Educational, Scientific and Cultural Organization.

UNESCO. (2022a). *Harnessing artificial intelligence for education in Africa: Challenges and opportunities* (Policy Paper No. 7[2]).

UNESCO. (2022b). *Leave no one behind: Enhancing literacy through mother tongue instruction in sub-Saharan Africa*.

World Bank. (2022). *Education and electricity access in sub-Saharan Africa: A critical analysis of the links* (Report No. 8[1], pp. 45–59).

Wright, D., & Johnson, S. (2021). Advancements in artificial intelligence for education: Insights from global perspectives. *Educational Technology and Society*, 24(2), 52–68.

Zhai, C., & Massung, E. (2021). *Text data management and analysis: A practical introduction to information retrieval and text mining*. Morgan & Claypool.

Zhao, J., & Wong, M. (2020). Transforming education with AI: Opportunities and challenges in developing countries. *Journal of Educational Development*, 29(1), 98–112.

Zhao, Y., & Wong, A. (2020). Transforming school administration with AI: A global perspective. *Educational Technology Research and Development*, 68(5), 2251–2266.